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In this work, the capacity of NBR and NDVI indices derived from LANDSAT

TM/ETM images has been analysed for fire severity assessment. For this

purpose, three fires occurring in southern Spain were studied. Firstly, the

displacements of burned and unburned pixels in the pre-/post-fire NIR-MIR and

NIR-R bi-spectral spaces were analysed with the aim of establishing which of the

two indices was the most sensitive for discriminating severity levels. Then, the

capacity of the two indices, both from a uni-temporal (post-fire) and bi-temporal

perspective (pre and post-fire), to discriminate three severity levels was studied.

Based on the results, it was decided that the most suitable way to assess wildfire

severity by index segmentation was to discriminate between unburned and

burned pixels according to their NBR pre-/post-fire difference values (dNBR),

and, subsequently, to distinguish between pixels with an extreme and moderate

severity based on the NBR post-fire values. The thresholds calculated for these

indices permitted fire severity mapping with an accuracy of 86.42% (¡4.31%).

These thresholds could be extrapolated to other fires with similar characteristics

although a calculation of their own specific thresholds could improve the

accuracy of the fire severity map obtained.

1. Introduction

In forest management it is essential to analyse the impact of a fire on the ecosystem.

From a broad outlook, fire severity can be defined as the degree of change in the soil
and vegetation caused by fire. Determining the perimeter of the fire, as well as the

distribution of severity levels inside it, facilitates the process of making decisions

aimed at restoring the affected areas. It also permits an analysis of fire effects on the

post-fire vegetation succession.

It is difficult to map severity levels in large fires using traditional methods,

especially when the affected area has a complex topography, with steep slopes,

inaccessible areas and previous heterogeneous vegetation, all habitual circumstances

in Mediterranean areas. After the fire, a series of spectrum changes takes place due

to the fire consuming the vegetation, destroying the chlorophyll, leaving the soil
bare, charring the roots and altering the soil’s moisture. The reduction in

chlorophyll results in an increase in the visible region of the electromagnetic

spectrum and in a diminution in the near infra-red region. In addition, with the

decrease in the tree canopy and soil moisture, the mid-infrared region increases after
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a fire event (Chuvieco 1997). For all those reasons, remote sensing, to be more

specific, the analysis of LANDSAT TM/ETM images, constitutes a valuable tool for

mapping burned areas and fire severity assessment as it offers an adequate spectral

and spatial resolution. Among the techniques used to estimate the level of fire

severity in vegetation, the indices derived from LANDSAT bands (ratios and

normalized differences as well as pre-/post-fire temporal differences) stand out.

In several works, many of them done in the Mediterranean area, the capacity of

indices combining the red and near-infrared regions to discriminate burned areas

has been successfully tested. One of those most used, both from a uni-temporal

(post-fire) and bi-temporal (pre-/post-fire difference) point of view has been NDVI

(Normalized Difference Vegetation Index) (Viedma et al. 1997, Dı́az-Delgado 1998,

Pereira 1999, Vázquez et al. 1999, Quintano et al. 1999, Chuvieco et al. 2002,

Heredia et al. 2003). In these works, it was argued that important falls in the values

of this index are recorded with burned surfaces and that its segmentation could give

a good approximation of the surface affected by a fire. Other indices combining the

red and near-infrared regions used to a lesser extent are: BAI (Burnt Area Index)

(Chuvieco et al. 2002, Heredia et al. 2003), SAVI (Soil Adjusted Vegetation Index)

(Chuvieco et al. 2002) and GEMI (Global Environmental Index) (Periera 1999,

Chuvieco et al. 2002).

The potential of the mid-infrared region of the spectrum for distinguishing burned

areas has been used in works carried out in ecosystems as different as the African

savannah (Trigg and Flasse 2001) and Mediterranean vegetation areas (Pereira

1999). The NBR (Normalized Burn Ratio) combining information on the near-

infrared and the mid-infrared regions has been used in the discrimination of burned

areas in the Mediterranean, using both a post-fire image (López et al. 1991, Heredia

et al. 2003) and a bitemporal pre-/post-fire difference (Heredia et al. 2003). Like

NDVI, NBR takes values ranging between 21 and 1. In vegetated areas it takes

positive values, while its negative values correspond to bare soil. In burned areas,

NBR values decline at the same time as the fire severity rises. NBR has been less

used than NDVI in this type of study as it requires the availability of information on

the mid-infrared region (band 7 in the TM/ETM sensors), which is lacking in some

sensors frequently employed in these applications, like AVHRR and WIFS.

As for the distribution of severity levels inside the fire’s perimeter, Diaz Delgado

et al. (2003) found a positive correlation between the drop in NDVI index values and

fire severity. Furthermore, in recent years, several works have demonstrated the

relationship between the pre-/post-fire NBR difference (dNBR) and fire severity

(Key and Benson 1999a, Wagtendonk et al. 2004, Cocke et al. 2005, Kokaly et al.

2006). In fact, dNBR, together with the fire severity assessment in-field index,

Composite Burnt Index (CBI) (Key and Benson 1999b), is used at present

operatively by the forestry services in the west of the USA (Howard and Lacasse

2004). Indeed, many works rely on dNBR to assess fire severity, which is later

related to different aspects of vegetation evolution (Kotliar et al. 2003, Wimberly

and Reilly 2005, Cocke et al. 2005). Epting et al. (2005) used 13 indices (bands,

ratios, normalized differences) for the discrimination of fire severity levels in four

fires in Alaska and concluded that post-fire NBR gave the best correlations with

field damage, followed by dNBR. However, they warned that the relationship

between the level of damage estimated and that assigned in-field was poorer in areas

with a sparser tree cover (open woods, scrub and pastures). NBR, which, as

mentioned above, has been used in Mediterranean areas for the discrimination of
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burned areas and even for the monitoring of post-fire vegetation (López and

Caselles 1991), but has not been employed for fire severity assessment. Recently,

Roy et al. (2006) have questioned the usefulness of the NBR index, based on the

results of their studies on the behaviour of the index using LANDSAT data sensed

over South African savanna prescribed surface fires and MODIS sensed data over

boreal and tropical forest fires. In this work, the NBR was seen to be fairly

insensitive to the pre-/post-fire changes in the bi-spectral NIR-MIR space.

With regard to the advantages and drawbacks involved in the use of post-fire

indices versus pre-/post-fire indices, it should be stressed that uni-temporal

applications are cheaper and faster than bi-temporal ones. Additionally, bi-

temporal applications imply a series of added errors derived from differences

between images which are non-attributable to the fire but to geometric deficiencies,

from the different illumination, atmospheric and phenological, etc., conditions,

which it is necessary to minimize. To alleviate these effects, it is usual to co-register

the images with a mean RMS of under 0.5 pixels and to carry out an atmospheric

normalization between images; it is recommended that the pre-fire image and the

post-fire image should be of the same date with a year’s difference (Key and Benson

1999a). In opposition to this, it should be pointed out that one of the main

disadvantages of using post-fire indices is that they do not give good results in the

discrimination between burned areas and water surfaces or areas with bare soil or

little vegetation (Heredia et al. 2003).

The researcher who analyses the evolution of vegetation in a burned area often

has no information on the fire severity suffered by the vegetation immediately after

the fire event. The application of supervised techniques (classification, regression,

etc.), which requires a knowledge of the fire severity of a certain number of plots in

the area, becomes complicated when it is a matter of studying fire events of past

years, for which in-field information obtained in the weeks after the fire is scant or

non-existent. Also, although the usefulness of the post-fire NDVI and NBR, as well

as the respective bi-temporal indices (difference between the index value before and

after the fire) dNDVI and dNBR in the discrimination of burned areas and fire

severity has been proven with the results of the works mentioned, the ultimate

challenge is to be able to generalize the results of some fires to others, at least in a

regional context. This means controlling the ‘‘perturbing factors’’ which influence

the spectral response observed and which are not related to the effect of the fire

(Trigg and Flasse 2001), such as the illumination and atmospheric conditions. In this

direction, some authors recommend using scenes close to the summer solstice, the

moment at which the images show their best illumination conditions, with less

shadow and where the contrast between the burned and unburned areas is more

apparent (Key 2005). It is also necessary to take into account the intrinsic spectral

characteristics of the surfaces analysed (type of vegetation affected and cover and its

phenological state, moisture, soil, etc.), which will condition the pre-fire index value.

Kokaly et al. (2006) warn about the impact of pre-fire cover on the use of dNBR to

map fire severity. In order to assess the previous vegetation factor, Miller and Yool

(2002), in a fire in New Mexico (USA), made a pre-classification of dNBR, thus

improving the fire severity assessment results and demonstrating the importance of

taking this factor into account.

The general aim of this work was to develop a methodology which permitted fire

severity assessment from an analysis of the indices derived from LANDSAT TM/

ETM images, NBR (Normalized Burn Ratio) and NDVI (Normalized Difference
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Vegetation Index) both from a uni-temporal (post-fire) and bi-temporal (pre-/post-
fire difference) perspective. This general objective was achieved by fulfilling three

specific aims: (1) analysing the bi-spectral NIR-MIR and NIR-R displacements of

pixels affected and unaffected by the fires and determining the optimality of the

indices NBR and NDVI to assign the severity levels, (2) analysing the capacity for

discriminating the severity levels of the following indices: NBR after the fire, NDVI

after the fire, difference between the NBR index before and after the fire and

difference between the NDVI index before and after the fire; (3) analysing the

influence of the previous value of the indices on their behaviour, starting from the
hypothesis that the decline in the NBR and NDVI indices values after a fire event

depends both on severity and on the indices values before the fire, and (4)

determining change thresholds in the fire severity level which could be generalized to

other fires.

2. Materials and methods

2.1 Study area

The Environment Department of Andalusia (Southern Spain), in conjunction with

the University of Cordoba, has conducted a burn severity assessment on all fires of

over 200 ha which have occurred in forest land during the last 10 years. Based on

this information, three fires were selected for this study (figure 1 and table 1). The

Figure 1. Post-fire 4-3-7 RGB LANDSAT images corresponding to the three study areas.
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first fire occurred in Aznalcóllar (Seville) on May 30, 1995, affecting 2500 ha of

stone pine (Pinus pinea L.) and cork oak (Quercus suber L.) forests, mixed with

stands of eucalyptus (Eucalyptus globulus Labill.) and maritime pine (Pinus pinaster

Aiton.). The elevation range is from 200 m to 450 m, with soils dominated by

cambisols, eutric regosols and litosols predominating over slate, quartzite and schist.

The second fire is located in Cazorla (Jaén) and was ignited on June 6, 2001, when it

was extinguished three days later the fire had burned 800 ha of maritime pine and

Aleppo pines (Pinus halepensis Mill.) forests. The elevation range is from 750 m to

1400 m with calcareous cambisols and regosols soils predominating over dolo-

mites and limestone and, to a lesser extent, clays and loam. Finally, the third fire

occurred in Nerva (Huelva) on 31 July, 2001 covering approximately 580 ha of

stone pines, eucalyptus and small stands of maritime pine and Holm oak (Quercus

ilex L. subsp. ballota (Desf.) Samp.). The elevation range is from 400 m to 700 m

and eutric cambisols and umbric leptosol soils predominate over agglomerate,

pumice, granite and slate. The selection of these three fires (from the large ones

occurring in Andalusia between 1995 and 2001) was conditioned by the availability

of images before and after the fire events, which met with our requirements

with regard to their quality and to the dates necessary for carrying out this work.

The affected areas were representative of the main tree-covered ecosystems in

Andalusia so that the results could be extrapolated in the future to other fires in the

region.

2.2 Field work

An initial assignation of damage was conducted on each fire in the weeks after the

fire event (Key 2005) and, therefore, the field work and the acquisition of post-fire

images were then carried out. The plots were established in extreme severity (total

consumption or scorching of crowns), moderate severity (partial scorching of

crowns) and unburned areas. Inside the perimeter of each fire, nine tree-covered plots

with a moderate severity and nine with an extreme severity were located. Outside the

fire perimeter, nine unburned plots were selected with a similar vegetation to that

affected by the fire. The plots measured 90690 m, the equivalent in LANDSAT

scenes to a 363 pixel window. In Aznalcóllar, where the fire affected the largest

surface, another nine plots were located per each severity level, which permitted a

validation of the study results.

2.3 Pre-processing of the images

Table 1 shows the dates of the images employed in this work. They were selected in

such a way that the date of the scene after the fire was the nearest to its occurrence,

while the previous scene corresponded to one year earlier, with the aim of

Table 1. Dates of the fires and pre-/post-fire images employed in the severity assessment
study.

Fire UTM X UTM Y Fire date Pre-fire image Post fire image

Aznalcóllar 203104 4162200 30/05/1995 20 Jul 1994 5 Jun 1995
Cazorla 505286 4201338 06/08/2001–08/08/2001 31 Aug 2000 3 Sep 2001
Nerva 187576 4183458 31/07/2001–03/08/2001 12 Jul 2000 1 Sep 2001
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minimizing the differences attributable to illumination conditions or phenological

changes.

The images were subjected to the following pre-processing:

1. Geometrical correction, by the control points method, taking as a reference

orthorectified aerial photographs of the area (1995–2001) with an RMS of

under 0.5 pı́xels.

2. Conversion to reflectivity by the atmospheric correction method COST

(Chavez 1996). An atmospheric correction was opted for and not a

normalization between pre- and post-fire images as it was aimed at

establishing comparisons between fires, not only between the corresponding

differences in NBR and NDVI indices which took the pixels in each severity

level, but also between the NBRpost and NDVIpost values.

3. Generation of indices:

˚ NBRpre: NBR corresponding to the scene before the fire

˚ NBRpost: NBR corresponding to the scene after the fire

˚ NDVIpre: NDVI corresponding to the scene before the fire

˚ NDVIpost: NDVI corresponding to the scene after the fire

˚ dNBR5NBRpre-NBRpost

˚ dNDVI5NDVIpre-NDVIpost

4. where,

NBR~1000 R4{R7ð Þ= R4zR7ð Þ½ � ð1Þ

NDVI~1000 R4{R3ð Þ= R4zR3ð Þ½ � ð2Þ

2.4 Analysis of the pre-/post-fire pixel displacements in the bi-spectral spaces NIR-
MIR and NIR-R. Optimality of the indices NBR and NDVI

In the NDVI or NBR spectral feature space, all the points of the equal index value

(isolines) fall along straight lines passing through the origin. Ideally, if a spectral

index is appropriate to the physical change of interest, then there is a simple

relationship between the change and the direction of the displacement in the spectral
feature space. The definition of an optimal spectral index requires the trajectory in

the spectral feature space to be perpendicular to the index isolines (Verstraete and

Pinty 1996). Figure 2 illustrates the optimal trajectory of a pixel from unburned to

burned (vector UBo), the real displacement from unburned to burned (vector UB)

and the index isolines that pass through these values (Roy et al. 2006).

The real displacement of a burned pixel (vector UB) represents the spectral

variation observed after the fire. The vector UB can be decomposed in the sum of

the vectors UBo and BoB. The former, (UBo), is related to the spectral changes

to which the index (in this case NBR or NDVI) is sensitive, whereas, on the con-

trary, the latter (BoB) represents the spectral changes to which the index is not
sensitive.

In this work, the displacements in the NIR-MIR and NIR-R bi-spectral spaces of
the burned and unburned pixels correspond to the information in the plots acquired

in the three fires. For each pixel, taking their pre- and post-fire spectral values, |UB|

(spectral variation observed), |BoB| (spectral variation observed to which the index is

where
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not sensitive) and |UBo| (spectral variation observed to which the index is sensitive)

were calculated, and the optimality of the indices NBR and NDVI for detecting the

pre-/post-fire spectral changes was calculated from the expression proposed by Roy
et al. (2006):

Optimality~1{ B0Bj j= UBj j½ �, 0v~Optimalityv~1 ð3Þ

In the case of the index’s behaviour being ideal, the optimality is equal to 1 and

the spectral changes observed are perpendicular to the isolines of the index. If the
index is completely insensitive to the spectral change, the optimality is 0 and the

spectral changes are produced in the direction of the index isolines.

2.5 Behaviour of the indices according to the severity level

A study was made of the behaviour of the indices according to the severity levels in

the three fires with the aim of detecting common features. For this purpose, an

Figure 2. Example of the pre-/post-fire trajectory of a pixel in the NIR-MIR or NIR-R
feature space. Isolines show the pre and post fire NBR or NDVI values (NBR if abscissa is
MIR and NDVI if abscissa is R). Vector UB represents the real displacement of pixel after the
fire, vector UBo represents the displacements to which the index is sensitive and vector BoB
represents the displacement to which the index is not sensitive.
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exploratory analysis was carried out of the indices values presented by the pixels

corresponding to the field plots.

It was predictable that for the same severity level the indices values were

conditioned by their pre-fire NBR/NDVI values (that depended on the type of

vegetation, cover, lithology, etc.). To analyse the effect of the prior value of the

index, the following Pearson correlation coefficients were calculated: dNBR versus

NBRpre, NBRpost versus NBRpre, dNDVI versus NDVIpre, NDVIpost versus

NDVIpre.

The capacity of the indices for discriminating severity levels was evaluated by

estimating class separability by a calculation of the Jeffries–Matusita Distance

(Swain and Davis 1978) which may range between 0 (there is no separability

between classes) and 1414 (maximum separability).

2.6 Determination of thresholds

In terms of the results obtained in the optimality, separability and correlation

analysis, the index with the greatest capacity for assessing fire severity was selected

and its segmentation was carried out. To do this, it was necessary to determine the

change thresholds between the unburned-moderate and moderate-extreme classes.

These thresholds were determined in terms of the values of the index of each group

of pixels according to their severity level for the group of fires so as to perceive the

variability between them and enable the extrapolation of the results to other fires.

The criterion of the multiple standard deviations was followed:

Xthreshold~Mi+a Devesti ð4Þ

˚ Xthreshold: Index value corresponding to the threshold

˚ Mi: Mean class i

˚ a: constant

˚ Devesti: Standard deviation of class i

The value of a, which some authors place at between 0.1 and 2 (Chuvieco 1996),

can be determined iteratively in terms of the results.

2.7 Validation

Once the change thresholds were established, the segmentation of the index selected

was performed for the fire with the greatest extension, Aznalcóllar, thus obtaining

the fire severity map. Next, that map was validated with the field information from

the 243 validation pixels, 81 pixels per class following the advice of Congalton (1991)

who recommends a minimum of 50 pixels per class.

The validation pixels were located by means of a random cluster sampling. When

a cluster sampling is carried out in remote sensing studies, it is recommended that

they should not exceed 10 pixels (Congalton 1991) in order to prevent problems

derived from spatial autocorrelation. For this work, nine clusters were located

(validation plots) of 363 pixels for each severity level. The 27 validation plots were

detected by a random cluster sampling, so that for each severity level nine plots with

363 pixels were located.

The corresponding error matrix was calculated in order to estimate the overall

accuracy as the percentage of validation pixels whose class had been well assigned
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with respect to the total number of validation pixels. Together with the overall

accuracy, its confidence intervals for a 95% probability were calculated for each

case, following equation (5) (Chuvieco 1996):

Real accuracy~Overall accuracy+1:96 pqð Þ=nÞ0:5
h i

ð5Þ

p being the success percentage, q the failure percentage and n the number of pixels

corresponding to the validation plots.

3. Results

3.1 NBR and NDVI optimality

Figures 3 and 4 show the mean and median values as well as the histograms of the

optimality of the indices NBR and NDVI calculated separately for the unburned

and burned pixels. Both the NBR and the NDVI present very low optimality values

for pixels unaffected by the fire (means of 0.21 and 0.14). The bi-spectral

displacements of these pixels are due to ‘‘perturbing factors’’, since severity is null

in these pixels, so that the low optimality values indicate that both indices are hardly

sensitive to these factors. For most of these pixels (74% in the NIR-MIR space and

84% in the NIR-R space), |BoB| which represents the spectral changes to which the

index is not sensitive, is superior to |UBo|, which represents the spectral changes to

which the index is sensitive.

With regard to the burned pixels, the optimality values of the NBR are

considerably higher, reaching a mean of 0.49. For most of these pixels (80%), |UBo|

which represents the spectral changes to which the index is sensitive, is superior to

|BoB|, which represents the spectral changes to which the index is not sensitive.

The NDVI, however, has much lower optimality values (mean of 0.18), which

indicates that the index is not sensitive to a good part of the displacement of the

pixels corresponding to burned areas in the bi-spectral space. For the majority of the

burned pixels (76%), |BoB| is superior to |UBo|.

In accordance with these results, the NBR behaves more adequately than the

NDVI for its use in fire severity applications.

3.2 Indices’ response to fire severity

As was expected, in general, for a specific NBRpre, the pixels with the lowest dNBR

values correspond to the unburned class, the intermediate values to the moderate

class and the pixels with the highest values of dNBR correspond to the extreme class

(see figure 5). With regard to the correlations dNBR versus NBRpre, no significant

correlation (p,0.01) was detected in any of the three fires for the unburned class.

Conversely, a positive and significant correlation did exist in the moderate and

extreme classes although it should be pointed out that the correlation was weaker in

the moderate class (r ranges between 0.31 and 0.56) than in the extreme class (r

ranges between 0.77 and 0.91) (see table 2). The range of the index was 1177 points

for Aznalcóllar, 1027 for Cazorla and 1036 points for Nerva (see table 3).

As for dNDVI, its behaviour was similar to that of the dNBR although in this

case the range of the index was much smaller than that of the dNBR in the three

fires (see table 3). The same as for the dNBR, in the dNDVI no significant

correlations were detected with the NDVIpre in the pixels of the not burned class,

while these correlations were significant for the moderate (with r values ranging
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between 0.59 and 0.81) and extreme (with r values between 0.89 and 0.93) classes

(see table 2).

With regard to NBRpost, the range was comparable to that of the dNBR (1041

points for Aznalcóllar and Cazorla and 1079 for Nerva, see table 3). For a same

previous NBR value, the lowest values of NBRpost correspond to pixels with extreme

class, the mean values to pixels with a moderate class and the highest values to

unburned pixels. As for the correlations, the opposite situation occurs with respect to

the bi-temporal indices. As expected, in the unburned pixels, NBRpre and NBRpost

Figure 3. Histograms NBR Optimality computed from unburned and burned pixels of the
three fires studied.
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were strongly correlated in the three fires with values of r ranging between 0.81 and

0.91. On the other hand, the extreme class pixels did not have any significant
correlations while the moderate severity ones had significant correlations with r

values ranging between 0.59 and 0.66 (see table 2)

Finally, the NDVIpost showed a very similar behaviour to the NBRpost although

the same as was observed in the bi-temporal indices, the amplitude was much
smaller (see table 3). As for the correlations, they were again significant, with r

between 0.84 and 0.90 for the unburned pixels and non-significant for the extreme

Figure 4. Histograms NDVI Optimality computed from unburned and burned pixels of the
three fires studied.
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Figure 5. Scatter plots show a strong positive correlation NBRpre versus dNBR and
NDVIpre versus dNDVI for extreme fire severity pixels. On the other hand, a strong positive
correlation NBRpre versus NBRpost and NDVIpre versus NDVIpost is detected for unburned
pixels.

Table 2. Theoretical and observed ranges in each fire considering the pixels corresponding to
the different severity levels jointly.

Theoretical Aznalcóllar Cazorla Nerva

dNBR [22000, + 2000] [2189, + 988] [2123, + 904] [2181, + 855]
dNDVI [22000, + 2000] [2136, + 700] [292, + 463] [2115, + 603]
NBRpost [21000, + 1000] [2402, + 639] [2322, + 719] [2408, + 671]
NDVIpost [21000, + 1000] [ + 93, + 822] [ + 155, + 744] [ + 101, + 727]

Table 3. Pearson correlation coefficients between each index and its pre-fire value calculated
for each fire (*p,0.01).

Fire Severity level
dNBR v.
NBRpre

NBRpost v.
NBRpre

dNDVI v.
NDVIpre

NDVIpost v.
NDVIpre

Aznalcóllar Not burned 0.10 0.82* 0.23 0.88*
Cazorla Not burned 20.11 0.91* 20.03 0.90*
Nerva Not burned 0.11 0.81* 0.03 0.84*
Aznalcóllar Moderate 0.31* 0.66* 0.59* 0.69*
Cazorla Moderate 0.44* 0.66* 0.73* 0.28
Nerva Moderate 0.56* 0.59* 0.81* 0.30
Aznalcóllar Extreme 0.85* 20.25 0.89* 20.26
Cazorla Extreme 0.91* 20.05 0.93* 0.06
Nerva Extreme 0.77* 20.11 0.93* 20.02
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class pixels. The moderate class pixels had correlations but with highly variable r

values ranging between 0.28 and 0.69 (see table 2).

Figures 6–8 show the values of the Jeffries–Matusita Distance (JM) for the

unburned-moderate, moderate-extreme and unburned-extreme classes, calculated
from the values displayed in table 4. In agreement with these values, the bi-temporal

indices have a greater capacity for separating the unburned-moderate classes

(figure 6). For these classes, dNBR presents higher JM values (of around 1200)

than those of dNDVI in two of the three fires studied.

The results of the separability analysis between the moderate and extreme classes

show that the greatest capacity for separating these classes corresponded to the

NBRpost, followed by the NDVIpost. The results were clearly worse for the bi-

temporal indices, although actually it was observed that the dNBR presented a
better discrimination than the dNDVI (figure 7). Finally, the four indices had very

high JM distance values between the unburned and extreme classes (figure 8).

It was observed that the indices with the worst separability results for two given

classes were those which showed strong significant correlations for both classes (see

Figure 6. JM Distance values between unburned-moderate classes.

Figure 7. JM Distance values between the moderate-extreme values.
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table 3). Thus, the post-fire indices (NBRpost, NDVIpost) gave worse results for the

unburned and moderate classes, while the pre-/post-fire indices (dNBR, dNDVI) did

so for the extreme and moderate classes. This was because in the classes with post- or

pre-/post-fire index values significantly correlating with the previous values of the

index, there was a greater dispersion and, therefore, a higher standard deviation (see

table 4), which had an influence on the separability.

3.3 Fire severity mapping

The results of the analyses of the index behaviour according to the severity level

demonstrated that pre-/post-fire indices are the most suitable for carrying out the

discrimination between unburned and fire-burned pixels, while the post-fire indices

were better for discriminating between pixels with a moderate and extreme severity.

So, the combination of two indices, one pre-/post-fire and the other post-fire, i.e. the

algorithm shown in figure 9, is considered to be the most appropriate solution for

assigning severity levels.

Based on the results obtained in the above sections, the pre-/post-fire index chosen

was the dNBR and the post-fire one the NBRpost. Then, threshold 1 (dNBR value

Figure 8. JM Distance values between the not burned-extreme values.

Table 4. Mean values and standard deviation for the pixels studied according to severity level
and fire.

Fire Severity level

dNBR dNDVI NBRpost NDVIpost

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Aznalcóllar Not burned 26 (68) 21 (53) 383 (118) 621 (106)
Cazorla Not burned 23 (54) 23 (42) 519 (129) 604 (95)
Nerva Not burned 230 (75) 9 (51) 364 (127) 558 (92)
Aznalcóllar Moderate 318 (97) 205 (89) 107 (124) 397 (100)
Cazorla Moderate 243 (81) 216 (81) 312 (97) 386 (58)
Nerva Moderate 265 (111) 293 (84) 111 (115) 308 (52)
Aznalcóllar Extreme 661 (152) 438 (119) 2272 (82) 167 (56)
Cazorla Extreme 510 (152) 265 (81) 2158 (63) 236 (29)
Nerva Extreme 612 (136) 401 (106) 2270 (88) 172 (38)
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which would permit the separation of the unburned pixels from the rest) and

threshold 2 (NBRpost value allowing the separation of the moderate severity pixels

from those with extreme severity) were determined for the group of fires in order to

take into account the differences between fires and enable the extrapolation of their

results to other fires.

The mean dNBR value and standard deviation of the unburned pixels for the three

fires was 22¡69. However, the mean NBRpost value and standard deviation of the

pixels with an extreme severity, for the group of fires, was 2233¡95. Starting from

these values, an iterative process was followed in which the successive standard

deviation multiples were added to the means until the thresholds calculated gave rise

to a success percentage of over 95% in the two classes to be separated (see tables 5

and 6).

The threshold obtained for separating the unburned and moderate classes was

dNBR5107 points. That obtained for separating the moderate and extreme classes

was NBRpost5273. In agreement with the algorithm in figure 9, 94.65% of the pixels

were correctly assigned to their class (95.88% of the unburned pixels, 92.18% of the

moderate class pixels and 95.88% of the extreme class pixels).

Taking the dNBR and NBRpost scenes corresponding to the Aznalcóllar fire, with

the thresholds calculated for the group of fires and following the schema in figure 9,

the severity levels were mapped. This map was validated with the group of pixels

corresponding to the validation plots of the Aznalcóllar fire. The error matrix

obtained is shown in table 7. The overall accuracy, namely the percentage of well

classified validation pixels, was 84.42%.

Figure 9. Algorithm for fire severity assessment by means of index segmentation.

Table 5. Determination of the dNBR threshold between the unburned and moderate classes by
the standard deviation multiple method.

Iteration Threshold dNBR

Not burned mMderate

% well classified % well classified

1SD 67 85.60 99.18
2SD 137 97.94 92.59
1.5SD 102 93.83 95.88
1.75SD 120 97.12 93.83
1.625SD 111 96.30 94.65
1.5625SD 107 95.88 95.47
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4. Discussion

The results of the analysis of the pre-/post-fire bi-spectral displacements (NIR-MIR

and NIR-R) of the pixels unaffected by the fire demonstrated that both indices,

NBR and NDVI, were hardly sensitive to the spectral changes caused by

‘‘perturbing factors’’, which is positive with regard to their use in assigning post-

fire severity. The results corresponding to pixels affected by the fire (with a moderate

or extreme severity) show that the NBR is much more sensitive than the NDVI to

the spectral changes produced. Although the optimality of the NBR calculated for

this group of pixels (mean of 0.49) is below the ideal, it was observed that the

displacements of 80% of the pixels followed a trajectory nearer to the perpendicular

at the index isolines (ideal trajectory), which paralleled them. This was a

manifestation of the usefulness of this index for assigning severity levels with

LANDSAT. These results contrast with those obtained by Roy et al. (2006), who

report very low NBR optimality values (mean of 0.1) calculated with LANDSAT

for a very specific type of fire, i.e. burning of surface in the African savannah, these

being difficult to extrapolate to fires on treetops in tree-covered areas. The same

authors obtain very low NBR optimality values for other ecosystems like boreal or

tropical forests, but in these cases optimality is calculated as an average of a group

of MODIS pixels, including both burned and unburned pixels. According to the

results of this present work, the NBR is fairly insensitive to the pre-/post-fire

changes in unburned pixels and, therefore, it would seem reasonably probable that

the poor mean optimality results obtained by Roy et al. (2006) were due to the fact

that pixels unaffected by the fire were included in their calculation.

The sensitivity to fire severity that dNBR, NBRpost, dNDVI and NDVIpost

showed in this work coincide with that described by other authors (Key and Benson

1999a, 1999b, Dı́az Delgado et al. 2003, Wagtendonk et al. 2004, Epting et al. 2005).

However, one should point out the greater capacity of the NBR to assess fire

severity levels, which is in agreement with the results of previous works that

Table 6. Determination of the NBRpost threshold between the moderate and extreme classes
by the standard deviation multiple method.

Iteration Threshold NBRpost

Moderate Extreme

% well classified % well classified

1 SD 2138 100.00 82.30
2 SD 244 92.59 97.94
1.5 SD 291 98.35 92.18
1.75 SD 267 94.65 96.30
1.625 SD 279 97.53 94.24
1.6875 SD 273 96.71 95.88

Table 7. Error matrix (%) corresponding to the validation pixels.

GA Not burned (estimated) Moderate (estimated) Extreme (estimated)

Not burned 91.36 8.64 0.00
Moderate 0.00 77.78 22.22
Extreme 0.00 9.88 90.12

Global accuracy: 84.42%
Real accuracy: 84.42 + /24.31%
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compare NBR and NDVI (Key et al. 1999, Pereira 1999, Heredia 2003, Epting

2005). The Introduction section contains the advantages and disadvantages of the

use of post-fire indices compared to difference pre-/post-fire indices observed by

different authors. Based on the results of this work, it should be added that since the

pre-/post-fire indices were significantly correlated with the pre-fire index value when

the severity level was moderate to extreme and given that the post-fire indices were

significantly correlated with the previous index value when the severity level was not

burned to moderate, it would not be advisable to use one or the other for assigning

severity levels independently without taking into account the pre-fire value. Based

on the observation of the indices’ behaviour, in order to assess fire severity levels by

means of indices segmentation, it is recommended to employ a combination of a

pre-/post-fire index (preferably dNBR), which discriminates between unburned pixels

and the rest, with the post-fire index (preferably NBRpost), which discriminates

between extreme and moderate severity.

The mean values of the indices in the different fires for the same severity level

differed, in some cases remarkably, from one fire to another. It is likely that the

most notable differences between fires, and even in the same fire, for the pixels

corresponding to the same severity level were due to the mentioned effect on the

previous index value (which, in turn, depends on the type of vegetation, moisture,

soil type, lithology, etc.). The methodology proposed eliminates this effect because

the threshold separating the unburned pixels from the rest was calculated on the basis

of their dNBR values, which were not correlated with their respective NBRpre

values. Analogously, the threshold separating the extreme severity pixels from the

moderate ones was calculated based on the NBRpost of the extreme pixels, which

were not correlated with their respective NBRpre values.

Other factors which, although attempts were made to minimize them, were not

completely controlled and may have an influence on the behaviour differences of the

indices from one fire to another are: deficiencies in the pre-processing of the images

(geometric corrections, errors in the atmospheric correction model employed), or

differences due to the moment of the acquisition of the images, which made the time

lapses acquisition of previous image-acquisition of subsequent image, field work

execution-acquisition of subsequent image be variable between fires. In any case, as

already mentioned, neither NBR nor NDVI were not seen to be very sensitive to the

spectral changes produced in unburned pixels by these ‘‘perturbing factors’’.

Furthermore, it should be remembered that fire severity is actually a continuous

variable, the same as the spectral response of the plant cover affected. The discrete

classes defined in this work include a really wide range of possibilities, which lend

importance to the variability in the index value for the same severity level in each fire

and between fires, depending on the type of combustion, soil characteristics,

lithology, etc. As an example of this, figure 10 shows the NBRpost values of the pixels

with an extreme severity level for each fire differentiating those pixels in which no

burned remains of foliage remained on the branches (total consumption of crowns)

and those in which these did appear (scorched crowns) (in Cazorla, in all the plots).

It can be clearly observed that in the plots in which a total combustion of the foliage

took place, the NBRpost was lesser regardless of which fire it was.

In any event, these uncontrolled factors did not prevent reaching a dNBR

threshold (107) which permitted the separation of the unburned pixels from the rest

and a NBRpost (273) threshold permitting the separation of moderate severity pixels

from the extreme pixels with 94.65% of well-classified pixels. By applying these
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thresholds to the Aznalcóllar fire, its severity levels were mapped and its validation

gave a global accuracy of 86.42% and a real accuracy of 86.42¡4.31%. These results

are slightly higher than those reported for forested areas by Epting et al. (2005) and

Cocke et al. (2005), who, when considering three and four severity levels by means of

a segmentation of the dNBR, obtained a global accuracy of 80.77% and 75%,

respectively.

The question to be asked is whether the thresholds calculated in this work can be

used to assess fire severity in other fires different from those analysed here. In this

sense, it should be pointed out that the dNBR5107 points threshold established to

separate the unburned pixels from those with a moderate severity is very near to the

orientative threshold fixed by Key et al. (2005) at dNBR5100 points and that which

Epting et al. (2005) arrived at, dNBR590 points, for one of the fires studied in their

works. No specific data were found in the literature on NBRpost threshold values

according to severity levels, but, however, the NBRpost was analysed for two other

fires in Andalusia, southern Spain: Quesada, occurring in 2000, and Ojén in 1999. It

was verified that in the Quesada fire, which affected masses of Aleppo pines, 97.53%

of the pixels corresponding to extreme class plots had NBRpost values of under 273

and 96.30% of the pixels corresponding to moderate class plots gave values of over

273. In Ojén, a fire which mainly affected shrubs and dispersed tree clumps, 77.78%

of the pixels corresponding to extreme class plots displayed values of under 273 and

85.56% of the pixels corresponding to moderate class plots had values of over 273.

All this leads one to assume that these thresholds are extrapolable to other fires,

even those which have affected clumps of dispersed trees or scrub.

Figure 10. Scatterplot NBRpost versus NBRpre for the pixels with an extreme severity
differentiating if they corresponded to plots with remains of burned foliage on the crowns
(scorched crowns) or plots with crowns totally burned (total consumption).
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5. Conclusions

The NBR index showed itself to be more sensitive to the pre-/post-fire displacements

of the pixels affected by the fire in the MIR-NIR space than the NDVI in the R-NIR

space. Both indices were hardly sensitive to the pre-/post-fire spectral changes

corresponding to the unaffected pixels attributable to ‘‘perturbing factors’’. The

pre-/post-fire difference indices dNBR and dNDVI are the most suitable ones for

carrying out the discrimination between pixels not burned by a fire (whose values are

not significantly correlated with the previous values of the indices) and pixels

affected by a fire. dNBR displayed slightly better results than dNDVI for separating

the unburned-moderate classes. However, the post-fire indices NBRpost and

NDVIpost are better for discriminating between extreme severity pixels (whose

values are not significantly correlated with the previous values of the indices) and

pixels with a moderate severity. The NBRpost gave clearly better results than

NDVIpost for the severity between the moderate-extreme classes.

The dNBR and NBRpost indices presented a clearly higher range than the dNDVI

and NDVIpost indices, which suggests that they are more suitable for detecting

different severity levels. The best option for assessing fire severity by the

segmentation of the indices studied is to do so in two steps: (1) separating the

unburned pixels from the rest on the basis of their dNBR value, (2) separating the

extreme severity pixels from the moderate severity ones based on their NBRpost

value.

In this work, the following thresholds were determined for fire severity

assessment: unburned pixels if dNBR,107 and pixels with an extreme severity if

NBRpost,273. These thresholds can be extrapolated to other fires although the

calculation of the latter’s own thresholds, whenever possible, would improve the

accuracy of fire severity maps.
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