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[1] Alterations in the hydrological cycle following wildfire due to the loss of ground
cover vegetation and changes in soil properties have been documented in many studies.
Nevertheless, the rapid process of vegetation recovery reduces such negative effects.
Vegetation cover before fire, fire severity, and geophysical properties are important factors
that control spatial discontinuities involved in the vegetation-covering process. The
objective of this study was to estimate the probability of high erosion in order to map
erosion-sensitive areas after fire. The analysis was carried out in different plant
communities burnt by summer wildfires in the pre-Pyrenean area (Spain). Three-year
Landsat Thematic Mapper (TM) images have been used for mapping wildfire areas and
severity levels. Conversion to spectral reflectance has been applied for radiometric
correction by normalizing topographic and atmospheric effects. Likewise, other physical
variables have also been incorporated into the geographic information system (GIS):
vegetation types, parent material, illumination, slope, aspect, and precipitation. The
dependent variable has been characterized by means of fieldwork and a
photointerpretation process based on high-resolution digital aerial orthophotographs taken
11–12 years after the fire. Different logistic regression models have been used for
mapping the probability of erosion. Results indicate that prefire normalized difference
vegetation index values and aspect are the most important variables for estimating erosion-
sensitive areas after fire (Nagelkerke r2 = 0.66; Kappa values = 0.65). Finally, the use
of nonparametric models with environmental digital information based on GIS can
facilitate the management of burnt areas.
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1. Introduction

[2] Wildfires are a natural disturbance in Mediterranean
ecosystems. Long-standing forests in the Mediterranean
Basin have been affected by fires for at least the last three
million years [Naveh, 1974], defining a variety of forest
compositions and structures, and shaping landscape prop-
erties [Trabaud, 2002]. Mediterranean-type ecosystems
show great resilience to such disturbances [Keeley, 1986],
with fire sometimes proving very important for forest
conservation in providing advantages to fire-adapted vege-
tation communities. However, the negative effects from
wildland fires (biomass loss, changes in successional pat-
terns, alterations in soil properties, etc.) are today consid-
ered among the most important problems affecting forest
degradation, since the natural capacity of Mediterranean
plant communities to regenerate is being reduced. The

increase in the occurrence of large-scale and intense wild-
fires is principally due to the rapid changes in land use and
climatic conditions (longer summer droughts, sudden
storms, etc.) In fact, in the Mediterranean region approxi-
mately 50,000 fires affect 5000 km2 of wooded land
every year [Barbosa et al., 2004] while in Spain around
150,000 ha of forest are burnt yearly.
[3] From a geomorphological point of view, wildfires

alter the hydrological processes governing runoff infiltration
generation and sediment production. Many studies have
reported an increase in runoff and sediment yield rates
after wildfires [Soto et al., 1991; Soler and Sala, 1992;
Dieckmann et al., 1992; Helvey, 1980; Meyer and Wells,
1997; Robichaud and Brown, 1999; Cannon et al., 2001;
Meyer et al., 2001; Moody and Martin, 2001; Cerdà and
Doerr, 2005]. The destruction of ground cover vegetation
and alterations in the physical and chemical properties of
soil (water repellency and aggregate stability), due to the
thermal impact of wildfires, are two of the most important
factors impacting hydrological and geomorphological alter-
ations. Vegetation cover consumption and litter duff alter-
ation constitute the main factors affecting soil loss. A
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decrease in the amount of interception materials means that
rain encounters fewer obstacles on its way toward the
ground, leading to a major increase in its kinetic energy
[Moody and Martin, 2001]. Consequently, its capacity to
modify the soil aggregate stability is much greater [Mataix-
Solera and Doerr, 2003], increasing soil erodibility. Al-
though the dryness and ash-covered soil observed after fire
may cause high infiltration rates [Cerdà, 1998], the main
risk of erosion appears in the first few stages after the fire
[Dı́az-Fierros et al., 1990]. In the medium term, erosion
processes caused by forest fires depend on the interaction
between ecological conditions, management practices
[Naveh, 1974, 1990], and vegetation regrowth processes.
Therefore a wide range of consequences may affect the
relevant areas [Neary et al., 1999], with nongeneralized
tendencies readily apparent [Wondzell and King, 2003].
[4] Regarding postfire regeneration, many Mediterranean

plant communities show effective regeneration mechanisms,
such as resprouting from fire-resistant structures and/or
seeding from fire-protected seeds. These mechanisms cause
a rapid vegetation postfire recovery. In fact, such a rapid
return to prefire conditions occasionally reduces the expo-
sure time to erosion agents considerably [Trabaud, 1990;
Vallejo and Alloza, 1998]. This recovery is designated the
autosuccessional process [Hanes, 1971; Papió, 1988; May,
1991] and has been well documented. Several works
describe this process, concluding that regeneration follow-
ing a fire is similar to an autosuccessional process compen-
sating a past regression [Naveh, 1990; Trabaud, 1990, 2002;
Trabaud and Valina, 1998; Tárrega and Luis-Calabuig,
1987, 1989; Vera de la Fuente, 1994; Badı́a et al., 1995].
However, specific sites may present difficulties for natural
vegetation recovery, due to the unique interactions between
fire impact and local factors, including topographic climatic
influences, plant composition, topographic parameters, soil
characteristics, land use history, or wildfire intensity. Thus
methodologies capable of identifying those areas where
erosion processes could be expected must be developed,
in order to support vegetation and soil postfire restoration
programs on a regional scale.
[5] There is widespread interest in mapping and predict-

ing environmental processes, such as erosion, on a regional
scale by means of predictive models [de Jong et al., 1999].
To this end, the use of geographical information systems
(GIS), digital elevation models (DEM), and multispectral
remote sensing techniques offers interesting possibilities for
developing such models. With respect to remote sensing
imagery, satellite data and remote sensing techniques have
been applied for the mapping of erosion [Bocco, 1991;
Martı́nez-Casasnovas and Poch, 1998], and for collecting
information regarding runoff and erosion models [de Jong
et al., 1999; King et al., 2005]. Nevertheless, many of the
parameters influencing infiltration and runoff (soil surface
roughness, soil porosity, soil texture, and initial moisture
content) are not directly accessible by satellite [King et al.,
2005].
[6] Concerning burnt areas, the impact caused by fire and

the subsequent recovery process may be detected and
monitored by means of remote sensing [Patterson and Yool,
1998; Bobbe et al., 2001; Rogan and Franklin, 2001;
Escuin et al., 2002; Van Wagtendonk et al., 2004]. However,
studies attempting to predict postfire erosion via integration

of this kind of data and techniques remain scant in the
literature. In this respect, Ruiz-Gallardo et al. [2004]
applied the normalized difference of the normalized differ-
ence vegetation index (NDVI) methodology to highlight
postfire management requirements as they relate to the
identification of potential erosion areas. Fernández et al.
[2005] generated a susceptibility model for postfire soil
erosion by means of mapping fire intensity. Other spatially
distributed models for assessing fire impact on erosion and
for identifying vulnerable areas prone to runoff increase are
HEM-GIS [Wilson et al., 2001] and SPLASH [Beeson et al.,
2001]. The former is an analytical hillslope erosion model
integrated into a GIS framework while the latter simulates
overland flow using Manning’s equation on a landscape
scale. Finally, in the USA, fire effects mapping has become
standard practice for postfire resources management [Miller
and Yool, 2002]. In fact, teams and researchers from the
interagency burned area emergency rehabilitation (BAER)
have developed different methodologies to minimize the
effects of postfire erosion.
[7] Taking into account the variability of erosion after fire

in the medium term, as well as the importance and advan-
tages of remote sensing data and GIS technology for
predicting these kinds of processes on a regional scale,
the objective of the present study is to estimate the proba-
bility of high erosion after fire in order to better map
erosion-sensitive areas. Different physical parameters
(lithology, vegetation type, fire severity levels, slope,
illumination, etc.) and spectral information (Thematic
Mapper data) have been entered into a specific GIS while
a nonparametric logistic regression (LR) model has been
used to estimate the spatial distribution of probability. The
results can assist forest managers not only in minimizing
postfire erosion, but also in allocating resources for
restoration efforts.

2. Site Description

[8] This study was conducted in different areas burnt in
the years 1985 and 1986 (Table 1), located in a sector in the
pre-Pyrenean range (1000 km2) in the north of Huesca
province (Aragón, Spain) (Figure 1). This area has an
extensive history of land use subjected to high levels of
human pressure and is especially prone to wildland fires. The
area has a very high geomorphological complexity with
elevation ranging from 450 to 2000 m asl. The bedrock
basically consists of limestone and sandstone, although there
are also areas dominated by calcareous marl and superficial
deposits associated with the fluvial network, restricted to
the middle basin of the river Gállego. The spatial distribution
of the different geomorphologic features and the diversity
of the geologic units generate high topographic variations,
with varied aspect and elevation values.
[9] The location of this area between continental Medi-

terranean (SE) and Atlantic influences (NE), in tandem with
the topographic variations, generates a heterogeneous cli-
mate that can be generally defined as sub-Mediterranean
with different levels of continental influence. The mean
annual rainfall ranges from 750 to 1000 mm with an
equinoctial rainfall pattern, with principal maximums occur-
ring in spring and a slight water shortage in summer which is
frequently interrupted by rainstorms. The mean annual
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temperature ranges from 10�C to 12�C, with warm summers
and a high risk of freezing in winter.
[10] Heterogeneity and a complex mixing of ecotypes and

vegetation patches is the result of these geoclimatic varia-
tions. Geobotanic classification based on phytosociology
association has identified four major classes: Echinosparto
horridi-Pineto Sylvestris sigmetum, Buxo sempervirentis-
Querceto pubescentis sigmetum, Helleboro foetidi-Querceto
rotundifoliae sigmetum, Violo willkommii-Querceto fagi-
neae sigmetum [Rivas-Martı́nez, 1987]. Moreover, planta-
tion and reforestation of Pinus sylvestris and Pinus nigra,
mixed with sub-Mediterranean shrub species (Buxus sem-
pervirens, Genista scorpius, Echinospartum horridum), are
also present. The great variation in lithological types,
topographic position, aspect and vegetation types provides
a large range of soil types. However, the most frequently

occurring are eutric and calcaric cambisols, regosols, lep-
tosols, and calcisols.

3. Methods and Data

[11] The methodological approach to mapping erosion-
sensitive areas after wildfire consists of successive phases,
with the goal of obtaining all of the different variables
included in the LR models, and then ultimately applying
these models to estimate the dependent variable. Some of
the techniques applied include remote sensing, GIS, field-
work and statistical analysis. The abovementioned phases
are detailed below. (1) Three Landsat images were selected
and then preprocessing techniques applied to achieve a
geometric and radiometric consistency. (2) Fire events that
occurred in the study area during 1985–1986 were mapped

Figure 1. Orthophotography of the pre-Pyrenean region and location of the burnt areas examined in
the study.

Table 1. Wildfires and Burnt Areas Analyzed During the Period 1985–1986

Fire Name

Fire Date Burnt Area, ha

Ignition Extinction Total Tree Area Nontree Area

Los Fils 26 July 1985 28 July 1985 100 100 0
Solano de Triste 5 August 1985 12 August 1985 700 600 100
Paco Anzánigo 23 August 1985 28 August 1985 1050 40 1010
Paco Aliana 15 September 1985 16 September 1985 1980 0 1980
Barranco del Rı́o Moro 31 July 1986 3 August 1986 550 21985 265
Umbrı́a de la Srra. de Aineto 31 July 1986 8 August 1986 2270 2150 120
Sierra del Águila 6 August 1986 10 August 1986 19800 125 675
Lapillera 23 August 1986 25 August 1986 1980 1980 0
Castillo Mango 25 August 1986 27 August 1986 900 200 700
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using RGB (743) false color band combinations and prefire
and postfire NDVI values. (3) Burn severity was mapped
using the differenced normalized burn ratio (DNBR) with an
extended perspective. (4) GIS was used to map geophysical
features. (5) An erosion database was obtained from
ground-based measurements and photointerpretation analy-
sis. (6) The LR was then applied.

3.1. Selection Images and Preprocessing

[12] Three Landsat 5 Thematic Mapper (TM) images
(path 30, row 199), recorded in August 1984 (prefire), Sep-
tember 1986 and July 1987 (postfire) were acquired. They
were selected based on the temporal coincidence of the
large wildfires that occurred during the dry seasons in 1985
and 1986 and the degree of cloud cover. Thus the 1984
image captures prefire spectral features from the burnt areas
while the 1986–1987 images capture postfire spectral
features from areas burnt in 1985 and 1986, respectively.
As can be inferred from the dates of these images, all of the
analysis applied in the burnt areas were conducted based on
a medium-term perspective by waiting until the following
year.
[13] Because of the importance of correctly comparing

these images, two considerations were taken into account.
(1) To minimize problems associated with the different
vegetation phenology, all of the images analyzed corre-
spond to the same season. As in the study area there is an
important presence of deciduous communities, thus it was
necessary to select summer for correctly analyzing fire sev-
erity and green biomass recovery (e.g., foliage shedding of
Q. gr. cerrioides in October–November could had been as-
sessed as a lack of regeneration, instead of a loss of green
biomass stemming from phenology). (2) An analysis of
rainfall collected during 1984, 1986, and 1987 was carried
out to assess its potential influence on the green biomass
present in the collected images. The annual rainfall in 1984
was 59 mm higher than in 1986, and 41 mm higher than in
1987 (Table 2). Nevertheless, if the analysis is constrained
to the rainfall with influence on fuel moisture content during
the dry season, that collected from May vis-à-vis each
image date, the differences are much less pronounced: only
7 mm between 1984 and 1986, and 2 mm between 1984 and
1987.
[14] Prior to conducting our analysis, all of the images

were geometrically corrected. The importance of an accu-
rate geometric rectification in this research is evident due to
the fact that three Landsat images were used and the image
data were linked with information derived from a digital
elevation model (DEM). Accordingly, a subset of the 1986
image framing all of the study area was geometrically
rectified into a local UTM projection (International 1909
Ellipsoid, European Datum 1950, Zone 30 North) using a
second-order polynomial model included in ERDAS

IMAGINE 8.7. In this rectification model, we incorporated
the DEM acquired from the Instituto Nacional de Informa-
ción Geográfica (CNIG) of Spain (pixel size = 10 � 10 m).
Ground control points (GCPs) were taken from high spatial
resolution orthophotographs available in digital format
(pixel size = 1 � 1 m). Our aim was to correlate the image
to the referenced UTM projection with an estimated error
lower than 1 pixel (30 m). A total of 104 GCPs was used to
reproject the data with an estimated RMSE of 0.50 pixels. A
nearest-neighbor resampling technique was used to mini-
mize changes in the radiometric values of the ground data,
with the pixel reprojected to 25 m. Moreover, the 1986
image was used as a reference to coregister the 1984 and
1987 images.
[15] Likewise, to compensate for variations in the sensor

radiometric response, as well as for the natural conditions of
solar radiance and solar angles, we converted our data to
spectral reflectance values by normalizing the topographic
and atmospheric effects. First, a revision of the dark object
method [Chavez, 1996] was applied to eliminate the atmo-
spheric effects present in all-optical remote sensing images.
Second, conversion from digital values to reflectance was
carried out by means of a method proposed by Pons and
Solé-Sugrañes [1994]. Accordingly, reflectance was com-
puted as follows:

rk ¼ Kp Lsen;k � La;k
� �� �

= E0;k cos qið Þ2
� �

ð1Þ

K ¼ 1þ 0:0167 sen 2p D� 93:5ð Þ=365ð Þð Þð Þ ð2Þ

where rk is the reflectance for band k, K is a factor that takes
into account the variation of the Sun-Earth distance
(computed as a function of the Julian day D), Lsen,k is the
radiance detected by the sensor (computed from the digital
values using the calibration coefficients included in the
image), La,k is the atmospheric radiance (computed from the
minimum dark object value of the band), cosqi is the cosine
of the incidence angle, and E0,k is the solar irradiance at the
top of the atmosphere and the solar zenith angle.

3.2. Mapping Burnt Areas

[16] Since changes in radiometric response are produced
after fire due both to the sudden decrease in plant recovery
and to changes in soil properties [Jakubauskas et al., 1990;
Dı́az-Delgado et al., 2003], including the increase of soil
exposure, satellite images are an efficient way to map burnt
areas [Minnich, 1983], to analyze damage levels [Siegert
and Hoffmann, 2000], and to monitor plant response on a
regional scale [Dı́az-Delgado and Pons, 2001].
[17] Many methods for discriminating the radiometric

effects caused by wildfires have been developed. Principal
components analysis [Fung and LeDrew, 1987; Conese et
al., 1988], Kauth-Thomas transformation [Collins and
Woodcock, 1996; Crist and Cicone, 1984], and spectral
vegetation indices [Townshend and Justice, 1986;
Kasischke and French, 1995] are some of the most com-
monly employed techniques. In the latter method, the NDVI
[Tucker et al., 1985] has been the most frequently used for
monitoring, analyzing, and mapping temporal and spatial
postfire variations, as it integrates two of the most important
bands for vegetation discrimination. These bands, combined

Table 2. Rainfall Data of the Periods Between the Available

Images

Image Date
Annual Rainfall,

mm
Rainfall Average From May to
Available Image Date, mm

1984 780 56 (May, July, August)
1986 721 49 (May, July, August, September)
1987 739 54 (May, July)
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as shown in the equation below, constitute the near-infrared
(NIR), from 0.76 to 0.90 mm, which is particularly respon-
sible for the amount of vegetal biomass, and the visible red
reflectance (R), from 0.63 mm to 0.69 mm, which is useful
for soil boundary.

NDVI ¼ NIR� Rð Þ= NIRþ Rð Þ ð3Þ

The burnt area perimeter was delimited using a RGB (743)
false color band combination of the 1986 image and the
difference between the NDVI prefire and postfire [Pérez-
Cabello and de la Riva, 1998; Viedma et al., 1997]. The
RGB image shows a strong contrast between the pink and
red colors, which correspond to the burnt area, and the
green and brown colors associated with the living or slightly
burnt vegetation (Figure 2). With regard to the NDVI
values, the average value in the burnt areas one year after
the fire was approximately 0.44 while the average prefire
NDVI was about 0.63 (Figure 3a). However, differences
based on vegetation type and the burnt area are evident; e.g.,
while a burnt plot of Quercus gr. cerrioides woodland
shows a mean value of 0.45, a Pinus sylvestris woodland
tract shows a mean value of 0.37. On the other hand,
small differences have been observed among NDVI values
based on the three images; e.g., in a nonburnt control plot
(170 hectares) differences <0.023 have been detected. This
fact ensures the comparability of the analysis for the areas
burnt in two different years.

3.3. Mapping Burn Severity

[18] Regarding damage level, fire severity can be under-
stood as a measure of the effects of fire on ecosystem
components [Key and Benson, 2006]. Moreover, fire sever-
ity is very important for understanding fire effects on both
postfire vegetation succession [Epting et al., 2005] and
postfire hydrological processes. Generally speaking, high-
severity burnt areas register higher rates of soil loss
[McNabb and Swanson, 1990] and lower rates of vegetation

recovery, due to the higher consumption of the forest floor
and canopy [Robichaud and Waldrop, 1994; DeBano et al.,
1998]. Therefore the impact is more permanent over time.
[19] To map burn severity, the normalized burnt ratio

(NBR) was calculated [Key and Benson, 2006]. This index
integrates the two most responsive bands, albeit in opposite
ways, to burning: NIR (from 0.76 to 0.90 mm) and mid-
infrared (SWIR) (from 2.08 to 2.35 mm) combined as shown
in the equation below.

NBR ¼ NIR� SWIRð Þ= NIRþ SWIRð Þ ð4Þ

To provide a quantitative measure of change, the DNBR is
obtained by subtracting the NBR data set derived after
burning from the NBR data set derived from before burning.

DNBR ¼ NBRprefire � NBRpostfire ð5Þ

[20] Two strategies for processing and applying DNBR
are possible [Key and Benson, 2006]. The first strategy, the
initial assessment, refers to the most immediate fire effects
to those biophysical components that existed before the fire.
It uses a postfire Landsat TM/ETM+ image from as soon
after the fire as possible and a prefire image of a similar
period from the previous year. The second strategy, the
extended assessment, uses a postfire Landsat TM/ETM+
image from a year after the fire and a prefire image from a
year or two before the fire, so long as the area conditions are
comparable. By waiting until the following growing season,
the vegetation has time to recover. This approach is ideal for
studies that compare several fire-affected areas over time. It
is also better for studying ecological processes, such as
erosion. For these reasons, this extended approach was the
one selected for our own research.
[21] The DNBR image is hypothesized to correlate with

the environmental changes caused by a fire. Accordingly,
Key and Benson [2006] indicated that the NBR strongly

Figure 2. False color band combination 7/4/3 (RGB) of the study area in 1986. Fire perimeters are
shown in white.

G04S10 PÉREZ-CABELLO ET AL.: MAPPING EROSION-SENSITIVE AREAS

5 of 13

G04S10



correlates with the composite burn index (CBI); neverthe-
less, this index may not be appropriate for estimating burn
severity in nonforested areas [Epting et al., 2005].
[22] The continuous DNBR data set can be stratified into

ordinal classes, or severity levels (Figure 3b). According to
the FIREMON methodology, four severity levels can be
observed inside the burnt areas, based on a combination of
different factors such as aspect, slope, weather conditions,
and particularly vegetation structure and floristic com-
position. The spatial distribution of these severity levels
in the burnt areas surveyed in the present study shows that
the highest levels occurred on north facing slopes, where
tree plant communities (Pinus sylvestris and Pinus nigra)
occupied large areas, while the lowest levels occurred on
south facing slopes which were occupied by nontree plant
communities.

3.4. Geophysical Features

[23] In addition to the predictors extracted from satellite
images (reflectance values from prefire images and DNBR),
other types of geophysical variables such as vegetation
types, vegetation structure, floristic composition, lithology,
illumination, slope, aspect, and climatic variables were in-
corporated into a specific GIS in order to evaluate the
control exerted by these variables on postfire erosion.
[24] Vegetation communities affected were identified by

means of a multispectral supervised maximum likelihood
classification (Euclidean distance normalized by variance)
applied to the 1984 Landsat TM image using the six non-
thermal bands. Training sites were selected based on both
field knowledge and the Forest Map of Aragón (1:50,000)

[Ruiz de la Torre, 1992]. The final classification accuracy
obtained was 78.55% (overall Kappa statistics = 0.74). The
algorithm enabled us to specify different facies of Pinus
sylvestris, Pinus nigra, Pinus halepensis, Quercus rotundi-
foliae andQuercus group cerrioides, as well as shrublands of
Buxus sempervirens, Echinospartum horridum and Genista
scorpius. These plant communities were categorized into
two types, according to the dominant species and their
regenerative traits: seedling species and sprouting species.
Structural parameters were also categorized into two groups:
tree plant communities and shrub plant communities.
[25] Lithology was obtained from the Geological Map of

Spain, distinguished into two categories, soft rocks (silts
and clays) and hard rocks (limestone and sandstones).
Figure 4a shows the spatial distribution of the different
lithological types. Topographic data are a prerequisite to any
hydrologic or geomorphologic study [King et al., 2005]. In
this case, slope angle, aspect, and illumination data were
obtained from the digital elevation model available and
calculated using the routines found in ERDAS IMAGINE
version 8.7. Subsequently, aspect was classified into two
groups: NW, N and NE exposures in the first and E, W, SE,
SW and S exposures in the second. Figures 4b and 4c
represent the spatial distribution of illumination and aspect.
[26] Finally, climatic variables (mean annual temperature

and precipitation) and climatic indices (Thermicity and
Fournier) mapping was carried out using multiple- regres-
sion models. These models are based on the relationships
between geotopographic variables derived from the DEM
and climatic data. The predictors used were as follows: x

Figure 3. Spatial distribution of spectral features selected by the models. These variables are shown
only in the two selected fires, Triste-Sierra de Centenero and Castillo Mango, corresponding to those
areas burnt in 1985 and 1986, respectively. (a) Spatial distribution of the NDVI in pre-fire conditions
(1984). (b) Spatial distribution of severity levels. In the areas burnt in 1985, the DNBR was computed as
the difference between the prefire NBR (1984) and the postfire NBR (1986). In the areas burnt in 1986,
the DNBR was computed as the difference between the prefire NBR (1984) and the postfire NBR
(1987). In both cases, an extended perspective was applied by using an image from the year following
the fire; moreover, the continuous image was categorized into severity levels according to the
FIREMON methodology.
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coordinate (latitude), y coordinate (longitude), and z coor-
dinate (elevation) while climate data recorded from
24 thermopluviometer stations over a period of 23 years
(1973 to 1995) was the dependent variable. Further details
can be found in the work of Pérez-Cabello [2002]. The
Fournier index is used to determine the influence of rainfall
on the erosion processes. This index is calculated as the
division between the square of the amount of rainfall during
the wettest month and the annual precipitation (mm). On the
other hand, the Thermicity index is one of the bioclimatic
indices included in the Rivas-Martinez methodology [Rivas-
Martı́nez and Loidi, 1999] for establishing a generic world-
wide climate classification. It is calculated as 10 times the
sum of the yearly average temperature (T), the average mini-
mum temperature of the coldest month of the year (m) and
the average maximum temperature of the coldest month
of the year (M). In this case, it was used as a tool to character-
ize the influence of climate on postfire vegetation processes.

3.5. Obtaining an Erosion Database

[27] Obtaining the dependent variable is based on knowl-
edge of the intensity and spatial distribution of erosion
processes in burnt areas. Two steps had to be completed to
obtain this variable: (1) fieldwork, to evaluate erosion by
measuring different biological, pedological, and geomor-
phological indicators; (2) photointerpretation of erosion and
vegetation recovery areas from high spatial resolution
orthophotographs. The first stage, surveying field plots, is
the most reliable source of reference data for determining
erosion level distribution. However, if the number of the
plots is not sufficient to conduct a statistical analysis, aerial
photographs can be used to assess the erosion level distri-
bution, thereby enhancing database size. Both methodolo-
gies are presented below.

3.5.1. Data Set Based on Fieldwork
[28] Fieldwork was carried out during the summer of 1999.

A total of 46 plots, of 100 m2, was surveyed inside the burnt
areas, grouping the different vegetation communities affected
by the fires that occurred in 1985 and 1986. Areas affected by
logging, afforestation, or pasturing were eliminated. For each
plot, three types of indicators were quantified to evaluate the

magnitude of erosion: (1) those related to erosion levels,
(2) those related to soil erodibility levels, and (3) those related
to the vegetation regeneration processes.
[29] To recognize erosion levels, a group of phenomena

was selected assessing by visual inspection their superficial
incidence. Visual criteria were used to identify the hydro-
logical erosion processes described in the Food and Agri-
cultural Organization (FAO) provisional methodology for
the evaluation of soil degradation [FAO, 1980]. The spatial
incidence, in terms of percentage, of the following erosive
manifestations was collected: accumulations of fine material
over roots and branches; the presence of exposed roots and
scars; the formation of erosion pavements, erosion pedestals
and drainage incisions in the flow lines (rills and gullies). To
determine the pedologic parameters, we followed those
categories listed in the guide for soil profile descriptions
[FAO, 1977], extracting the following indicators: depth of
the organic horizons (A00 and A0); structure and texture of
A horizon; consistency, size and shape of the aggregates
of A horizon; pH, carbonates and organic matter content. In
evaluating the level of vegetation cover, i.e., the perpendic-
ular projection of each stratum’s aerial parts, was collected
following the Braun-Blanquet [1979] methodology, and
incorporating the stratum analysis of Bertrand [1966]. Sub-
sequently, the 46 samples were grouped into two categories:
high (1) and low (0) erosive activity, with 15% of the active
surface used as the threshold for distinguishing between the
two groups. Tables 3, 4, and 5 show the average values of the
indicators used for the two types of dependent variable. In
general terms, a higher soil degradation level was observed
in group 1. Moreover, changes in postfire erosion seem to
have been related to vegetation recovery. Regarding the

Figure 4. Spatial distribution of the geophysical features selected by the models. These variables are
shown in the same two fires selected previously. (a) Lithological map classified as a function of rock
hardness. (b) Illumination map obtained using solar angles corresponding to the prefire image (1984).
(c) Aspect map obtained from the DEM.

Table 3. Average Values of Erosiona

Plots Bare Soil, % a b c d e f

(0) 21 11.6 0.3 0.3 1.7 2.7 0.0 0.7
(1) 25 30.2 2.3 1.7 4.3 11.0 0.3 4.6

aHere 0 indicates plots with low erosion; 1 indicates plots with high
erosion. Erosive manifestations measured in percentage levels are as
follows: a, accumulations of fine material over roots and branches;
b, presence of exposed roots; c, scars; d, formation of erosion pavements;
e, erosion pedestals; f, drainage incisions in the flow lines (rills and gullies).
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latter, a statistically significant correlation at the 0.01 level
(two tailed) between erosion and postfire vegetation recov-
ery (Pearson correlation = �0.622) was observed. Signifi-
cant differences in the recovery processes vis-à-vis erosion
groups (1 and 0) were also observed.

3.5.2. Data Set Based on Photointerpretation Analysis
[30] Taking into account results from fieldwork, as well

as the usefulness of photointerpretation techniques, a second
method to enhance the calibration data set was employed.
The data set based on fieldwork was overlaid onto digital
orthophotographs, with chromatic and textural keys corre-
lating to erosion levels then identified from them. Accord-
ing to these keys, and based on the relationships between
vegetation recovery and postfire erosion, 160 polygons of
variable size were digitalized, always next to the fieldwork
plots. An erosion level (1 or 0) was then assigned to the new
polygons according to the criterion of minimum distance.
ESRI’s ArcGIS was utilized for this phase.

3.6. Application of the Logistic Regression

[31] A LR model, a special case of multiple regressions,
has been successfully applied in numerous studies: mapping
landslide susceptibility [Gorsevski et al., 2000; Ohlmacher
and Davis, 2003], human fire risk [Chuvieco et al., 2004],
spatial distribution of vegetation species [Aspinall, 2002], or
the identification of large-scale interannual forest cover
changes [Fraser et al., 2005]. These studies have demon-
strated good results for estimating the explanatory capacity
of such predictor variables.
[32] In this study, LR was used for mapping the proba-

bility of high erosion in the burnt areas of pre-Pyrenean.
The principle underlying LR is that a phenomenon mea-
sured with a dichotomous variable is determined from
independent predictors [Menard, 1995]. There is nonrestric-
tion on the independent variables, except that they cannot be
linearly related. In this case, the goal of the LR model was
to describe the relationship between a set of independent
variables and two levels of erosion: (1) high erosion and (0)
low erosion. Three kinds of trials were carried out to find
the best fitting model and to rank the relative importance of
the independent variables. The Maximum likelihood esti-
mation was the method used to calculate the logistic
coefficients (the natural logs of odds ratios), with a stepwise
LR procedure then applied. This model fits the dependent
variable using the equation below:

P y ¼ 1=Xð Þ ¼ exp
X

BiXi
� �

=1þ exp
X

BiXi
� �

ð6Þ

where P is the probability of the dependent variable, and Xi
and Bi are the independent variables and the estimated
coefficients of the model, respectively.
[33] The relative importance of the variables included can

be assessed using the corresponding b and exp(b) coeffi-
cients in each model. The former indicates the estimated
coefficient in the model while the latter, the antilogarithm
transformation of b, refers to the predicted change in odds
for each unit of increase in the predictor. The odds ratio is
the relationship between the probability of being true and
the probability of not being true. When b is positive, exp(b)
will be greater than 1 and the odds ratio will increase; when
b is negative, the antilogarithm will be lower than 1, and the
odds ratio will decrease. The global measure of model
fitting has been evaluated by the likelihood value �2LL,
the Hosmer and Lemeshow test, and the Nagelkerke r2.
[34] The significance of the predictors was assessed by

means of the Wald test. Prior to applying the LR models,
two previous analyses were carried out. The first removed
from the analysis pixels of bare soil or scarcely covered
areas by defining the prefire NDVI value of 0.2 as the
threshold for pixel inclusion in the model. The second
analyzed, by means of Pearson coefficients, the correlation
between covariables in order to not break the only requisite
of the LR models. Thereafter, two groups of variables were
considered: spectral and geophysical.
[35] To validate the final result, only 80% of the sample

was selected as a calibration data set (n = 636) while the
remaining 20% was used to test the model. Concerning the
calibration data set, 337 pixels had a value of 0 (low
erosion) while 299 pixels had a value of 1 (high erosion).
A confusion matrix, as well as overall Kappa statistics
[Congalton and Green, 1999], was generated to assess the
models’ accuracy. The statistical analysis was developed
using SPSS v.12. To generate the final probability map,
image processing and data compilation were carried out
using ERDAS IMAGINE version 8.7.

4. Results

[36] After having applied the Pearson correlation analysis
to the continuous variables, we selected those to be intro-
duced into the different LR models which are shown in
Table 6. The DNBR and TM bands 3 and 4 were included as
spectral continuous variables. Elevation, slope, illumination,
and Fournier were included as geophysical continuous
variables while aspect, lithology, and vegetation (structure
and regeneration strategy) were included as dummy varia-

Table 4. Pedological Features Used to Assess Erosiona

Plots
Depth Organic
Layer, cm

Organic
Matter

Aggregate
Consistency Aggregate Size Aggregate Shape Carbonates

(0) 21 0.9 9.1 slightly hard thin-medium subangular-angular 9.2
(1) 25 0.6 8.8 Soft thin-very thin subangular-granular 13.1

aHere 0 indicates plots with low erosion; 1 indicates plots with high erosion.

Table 5. Vegetation Parameters Used to Assess Erosion Measured in Percentage Levelsa

Plots Stratum 1 Stratum 2 Stratum 3 Stratum 4 Stratum 5 Accumulated Recovery

(0) 21 74.4 29.2 26.4 6.9 0.8 136.3
(1) 25 50.0 29.0 31.1 3.7 0.0 116.0

aHere 0 indicates plots with low erosion; 1 indicates plots with high erosion.

G04S10 PÉREZ-CABELLO ET AL.: MAPPING EROSION-SENSITIVE AREAS

8 of 13

G04S10



bles. Precipitation, Thermicity index, and TM bands 1, 2, 5,
and 7 were excluded from the LR modeling due to the high
autocorrelation among them (Pearson coefficient > 0.4).
[37] With these selected variables, the first LR model

(model 1) was constructed; its overall statistics are summa-
rized in Table 7. Nagelkerke r2 indicates a good correlation
between the selected variables and the erosion categories.
More than 60% of the variations surrounding the dependent
variable are explained by this model (Nagelkerke r2 = 0.65).
The Hosmer-Lemeshow test indicates that the model ade-
quately accommodates the data (p value = 0.117), while the
overall Kappa statistic, which evaluates the model’s accu-
racy, indicated that a fair percentage of the data was
correctly classified (0.60). DNBR, TM bands 4 and 3 from
the prefire image (1984), illumination, as well as the
dummy variables lithology and aspect are the most impor-
tant factors in determining the probability of high erosion.
On the other hand, slope, elevation, Fournier index values,
and vegetation parameters such as structure and regenera-
tion strategy were not selected by this model. Regarding the
relative importance of the selected variables, all of the
coefficients, except those corresponding to TM band 4
and the dummy variable lithology, show positive signs
and exp(b) values greater than 1. Therefore DNBR, illumi-
nation, TM band 3, and areas predominantly occupied by
soft lithologies positively correlate with the probability of
high erosion. Likewise, exp(b) coefficients of illumination,
DNBR, and TM bands indicate that they only slightly
impact the dependent variable while aspect and lithology
are the best estimators in this model (Table 8).
[38] Given the sign and the levels of participation for

the different spectral variables in the first model (b co-
efficients = 0.095 and �0.017 for bands 3 and 4, respec-
tively), a second trial was developed by modifying the initial
variables introduced in the model. Bands 4 and 3 were
replaced by the NDVI values, whose mathematic expression,
as is well known, includes bands of R and NIR, thereby
emphasizing the vegetation cover. In this model, TM band 7
(2.08–2.35 mm) was also incorporated since it did not

correlate with the NDVI, and the same geophysical variables
retained from the first LR trial; results are shown in Table 7.
In this case, Nagelkerke r2 and the Hosmer-Lemeshow test
show slightly greater fitting values than those shown in the
first trial. DNBR, elevation, illumination, NDVI, TM band 7,
and the dummy variable aspect were the variables selected in
this second trial (model 2) (Table 9). All the b coefficients,
except that for NDVI, show positive values. Therefore
whereas NDVI exerts a negative impact, increasing the
probability of high erosion after fire, the rest of the selected
variables are related positively. Nevertheless, only the exp(b)
aspect and NDVI values, especially in the latter case, exert
great influence on the dependent variable. Differences be-
tween the two trials lie not only in the high impact of the
NDVI variable when it replaces bands 3 and 4, but also in the
elimination of the lithology as an explanatory variable.
However, in both cases, the exp(b) coefficients of DNBR
and illumination only slightly impact probability.
[39] Taking into account the factors and coefficients from

both models, predicted probability maps were derived by
means of digital processes in ERDAS. Figures 5a and 5b
show the probability value of erosion in each cell for the first
and second trial, respectively. Outcomes ranged from 0 to 1,
with a 0.5 probability value defined as the threshold for
distinguishing between the two conditions: high erosion and
low erosion after fire.
[40] In the first probability map (derived from the first LR

model), areas with the lowest probability of erosion are
localized on north facing slopes (with high prefire TM band
4 and low TM band 3 reflectance values) while the areas
with the greatest probability correspond to south facing
slopes (low TM band 4 values). With reference to the
second LR model, areas with the lowest erosion probability
are localized similarly on north facing slopes (with high
prefire NDVI values) while areas with the greatest proba-
bility correspond to sparse vegetation prefire areas located
on the south facing slopes. We have observed a high
consistency, from a visual point of view, between this
second probability map and the NDVI prefire image.
Whereas high-probability erosion values are more numer-
ous in the first model, in the second model the low

Table 6. Independent Variables Introduced in the First LR Model

Name Type

DNBR continuous
TM band 3 continuous
TM band 4 continuous
Elevation continuous
Slope continuous
Illumination continuous
Fournier index continuous
Vegetation: structure categorical
Vegetation: regeneration strategy categorical
Lithology categorical
Aspect categorical

Table 7. Summary of Statistics for All Models

Parameters
First Model
(Model 1)

Second Model
(Model 2)

�2 log likelihood (�2 LL) 457.63 443.23
Nagelkerke r2 0.65 0.66
Hosmer and Lemeshow: c2 (Sig) 12.85 (0.117) 5.47 (0.760)
Percent correct classification (0) 90.2 88.1
Percent correct classification (1) 85.7 79.9
Kappa statistic 0.63 0.65

Table 8. Variables Selected in Model 1

ba Wald Statistic Significance Exp(b)

DNBR 0.004 20.823 0.000 1.004
TM band 3 0.095 52.158 0.000 1.099
TM band 4 �0.017 10.328 0.001 0.983
Illumination 0.065 27.830 0.000 1.068
Lithology �1.546 25.581 0.000 0.213
Aspect 3.051 101.622 0.000 21.135
Constant �7.903 20.765 0.000 0.000

aEstimated coefficient.

Table 9. Variables Selected in Model 2

ba Wald Statistic Significance Exp(b)

DNBR 0.005 28.052 0.000 1.005
Elevation 0.002 8.296 0.004 1.002
Illumination 0.083 32.693 0.000 1.087
Aspect 2.787 87.386 0.000 16.231
NDVI �7.788 8.199 0.004 0.000
TM band 7 0.035 15.678 0.000 1.036
Constant �10.678 13.984 0.000 0.000

aEstimated coefficient.

G04S10 PÉREZ-CABELLO ET AL.: MAPPING EROSION-SENSITIVE AREAS

9 of 13

G04S10



probability values prove the most important. This fact
underscores the sensitivity of the final results in selecting
the initial variables. From a statistical point of view, an
exponential relationship has been detected between the two
models (model 2 = 0.0063e4.9023model 1; r2 = 0.82).
[41] Accepting the results of the second model as more

closely reflecting reality, the stability and impact of the most
important explanatory variables selected by it (NDVI and
aspect) were evaluated in a third trial. The potential distort-
ing effects of these models vis-à-vis temporary factors was
also verified, with the different meteorological conditions
that followed the fires being particularly important. In this
third trial, the global sample was divided into two groups,
reflecting the dates of the fires (n = 131 and n = 505 for
1985 and 1986, respectively), with the same explanatory
variables observed in the second model similarly consid-
ered. The models obtained from the second and sixth steps
of both groups were those that features the most consistent
values (Hosmer-Lemeshow >0.05) (Table 10). Nagelkerke r2

values were similar to those obtained for the global sample.
NDVI and aspect were the selected variables in both cases
(Table 11). Although the impact of aspect variable was
similar in the two subsamples, the impact of NDVI proved
much more important in the burnt areas of 1986. This fact
can be explained by the shady conditions prevalent to most
of the areas burnt during this year. On the other hand,
DNBR, elevation, illumination, and TM band 7 were also
selected in the 1986 group.
[42] Finally, to obtain a susceptibility map, a probability

map generated with the variables and coefficients from the
second model was subdivided into categories. In the liter-
ature, several methods can be found, ranging from expert
reference studies [Dai and Lee, 2002] to more statistical
approaches [Ohlmacher and Davis, 2003]; for further
details, see Ayalew and Yamagishi [2005]. In this study,
the categorization was made by using regular intervals.
Thus the histogram for the probability map was subdivided

into five categories of erosion susceptibility: very low, low,
medium, high, and very high (Table 12). Sixty percent of
the burnt areas registered very low and low susceptibility
values. Medium and high-susceptibility areas accounted for
10% and 11% of the areas, respectively, while those areas
corresponding to very high susceptibility values constituted
18%; results are shown in Figure 6. The high-susceptibility
areas, in white, included those with a probability greater
than 80% which corresponded particularly to prefire shrub-
lands and grasslands located on south facing slopes. This
fact is especially visible in the fires that occurred in the
western quadrant of the study area (Moro, Anzánigo, Triste,
and Castillo-Mango). It remains less clear in the fires of the
eastern quadrant where the burnt areas, as has been men-
tioned above, are located on north facing slopes.

5. Discussion

[43] The impact of the NDVI and aspect variables in the
LR models shows the role of prefire vegetation and micro-
environmental conditions on postfire erosion. The explan-
atory capacity of both variables is evident if one examines
those areas burnt in different years (model 3), or if one
adopts a global perspective, taking into account all of the
burnt areas addressed in the same analysis (models 1 and 2).
In fact, these variables provide evidence of the tolerance
levels vis-à-vis environmental degradation processes result-
ing from the high-severity wildfires. In this sense, tree-plant
communities with high NDVI values located on north
facing slopes are those most capable of withstanding the
negative effects of fire in the medium term. These areas
have a greater amount of resources available, and in the

Figure 5. Spatial distribution probability of postfire erosion activity derived from the LR models.
Detailed images of the two selected fires. (a) Probability map predicted by model 1. (b) Probability map
predicted by model 2.

Table 10. Overall Model 3 Statistics

Fire
Year Step

Hosmer and
Lemeshow �2 Log

Likelihood
Cox and
Snell r2 Nagelkerke r2c2 Significance

1985 2 11.070 0.198 114.766 0.400 0.533
1986 6 11.392 0.180 322.776 0.524 0.700

Table 11. Variables Selected in Model 3

Fire Years Variables ba Wald Statistic Significance Exp(b)

1985 aspect 2.971 38.132 0.000 19.503
1985 NDVI �7.345 8.438 0.004 0.001
1985 constant 2.807 3.915 0.048 16.553
1986 DNBR 0.006 19.206 0.000 1.006
1986 elevation 0.003 9.625 0.002 1.003
1986 illumination 0.086 26.845 0.000 1.089
1986 aspect 3.052 63.603 0.000 21.153
1986 NDVI �9.765 8.352 0.004 0.000
1986 TM band 7 0.034 11.296 0.001 1.034
1986 constant �10.271 8.615 0.003 0.000
aEstimated coefficient.
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short term, a sufficient recovery level to limit postfire
geomorphological reactivation as well. They possess mature
biological structures that while needing more time to
completely reconstruct themselves, possess a greater inertia
since they have not suffered any recent negative disturban-
ces prior to the fire.
[44] General theories associate high severity with the

intensification in negative effects (increases in erosion and
soil degradation) due to the large biomass present. In fact, in
the LR-developed models, the DNBR variable has always
shown a positive value. Nevertheless, aspect seems to
modify the importance of the severity variable, at least in
the long term. Environments suffering hydrological short-
ages, in which the aspect variable influences the soil-
vegetation complex, are widely studied, to the extent that
the term slope dimorphism has been coined to describe this
phenomenon [Bergkamp, 1996; Ibáñez et al., 1997]. The
different behaviors exhibited by the opposite slopes can be
attributed to the microclimatic variations derived from
the distinct radiation that affects slopes. North facing
slopes typically experience milder conditions for postfire
vegetation recovery; consequently, their edaphogenesis-
morphogenesis balance leads to the type of soil formation
that allows for greater water-storing capacity, higher infil-
tration rates, and in short, a clear differentiation in runoff
mechanisms. Detailed analysis made by Pérez-Cabello
[2002] on burnt areas showed that the interaction between
vegetation density and aspect explains in large part postfire
erosion.

[45] Other variables, despite having a lower explanatory
capacity for erosion distribution, have also been selected by
the LR models applied in this work. Some examples are fire
severity, lithology, illumination, band 7 TM, elevation, and
vegetation structure. Furthermore, in the study area, varia-
bles such as climatic indices, vegetation regeneration strat-
egy, or slope were not significant predictors of high erosion,
although they can be important in other locations or in
analysis geared toward another scale. Special attention must
be paid to the slope behavior in the different trials applied.
This variable is considered usually one of the factors that
most greatly determines the qualitative and quantitative
characteristics of runoff generation. However, in the differ-
ent models developed in this work this variable was never
selected. It is necessary to point out that erosion measure-
ments have been made from a long-term perspective; in this
respect, slope can have a higher impact on erosion in the
short term. Just after the fire, slope is particularly important
due to the disappearance of vegetation cover. During this
time, slope controls not just the speed of surface and
subsurface water flows, but indeed the kinetic energy of
the erosive agent, infiltration rates, and sediment conditions.
However, the results of the models applied in this study
show that, over the long term, other factors replace or
neutralize the role played by slope. In any case, one must
not to forget that LR models are self-explanatory and
nonpredictive.

6. Conclusions and Implications

[46] The development of methodologies capable of iden-
tifying areas where high erosion could be expected is very
useful to support restoration programs in burnt areas. In this
respect, the use of nonparametric models (LR) in tandem
with environmental information from TM Landsat and
DEM, as incorporated into a GIS, can facilitate the man-
agement of burnt areas. Taking into account this type of
statistical analysis and data, our study shows the great
explanatory power of the prefire NDVI and the aspect

Figure 6. Susceptibility map of erosion activity following the fire.

Table 12. Probability Ranges Applied to the Susceptibility Map

Probability Range Class Name Coverage, %

<0.20 very low 44.40
0.20–0.40 low 16.13
0.40–0.60 medium 10.01
0.60–0.80 high 11.05
>0.80 very high 18.38
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variable in generating probability maps regarding postfire
erosion in the medium term. High NDVI values in north
facing slopes generate a rapid postfire vegetation recovery
and reduce the exposure time to erosion agents. By using
these two explanatory factors, which have proven the most
effective, others of less importance have been identified to
explain the dummy variable: fire severity, lithology, illumi-
nation, TM band 7, and elevation. In spite of their lower
impact, their values in the models are consistent with the
studied phenomena. Thus more than 60% of the variations
observed in the dependent variable can be explained by the
LR model. This percentage decreases to 55% when the
global sample is divided by the year the fire occurred.
[47] On the other hand, it is interesting to note that classic

risk model predictors (e.g., slope) have not been considered
in any of the trials to date. Medium-term estimations of
erosion have shown changes in the ranking of explanatory
variables. These changes can be explained as stemming
from the interactions among these factors over time.
[48] Despite the abovementioned findings, this method-

ology is capable of identifying erosion-sensitive areas;
consequently, it can be used as a planning decision tool in
conservation practices following a fire. The consequences
of using this kind of cartography in the management of
burnt ecosystems are evident. Prior knowledge about which
areas have higher probability of developing intense erosion
processes allows for better management of burnt restoration
programs. Nevertheless, in order to reach a more accurate
spatial approach, some aspects must be considered: (1) the
need to continue investigating the incorporation of satellite
information in predicting erosion processes in burnt areas
and the necessity of identifying and mapping fire severity,
(2) the introduction of other physical factors related to soil
properties such as texture, structure, organic matter content,
and depth, and (3) the testing of predictive models that
consider erosion as a continuous variable.
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G. Schmuck (2004), Assessement of fire damages in the EU Mediterra-
nean countries during the 2003 Forest Fire Campaign, Rep. SPI.04.64
EN, Eur. Comm., Brussels.

Beeson, P. C., S. N. Martens, and D. D. Breshears (2001), Simulating
overland flow following wildfire: Mapping vulnerability to landscape
disturbance, Hydrol. Processes, 15, 2917–2930.

Bergkamp, G. (1996), Mediterranean Ecosystems: Hierarchical Organisa-
tion and Degradation, 238 pp., Cip-Gegevens Koninklije Bibliotheek,
The Hague, Netherlands.

Bertrand, G. (1966), Pour une étude géographique de la végétation, Rev.
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Pérez-Cabello, F. (2002), Paisajes forestales y fuego en el Prepirineo occi-
dental oscense: Un modelo regional de reconstrucción ambiental, Ser.
Invest., vol. 33, Publ. del Cons. Prot. de la Nat. de Aragón, Zaragoza,
Spain.
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Prepirineo occidental oscense, Geographicalia, 36, 131–145.
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