Remote Sensing Applications Center logo which links to the center's site.
USGS logo which links to the department's national site.

References for the developmental background and evaluation of
NBR/dNBR as a severity index

Allen, J.L. & Sorbel, B. (2008). Assessing the differenced Normalized Burn Ratio's ability to map burn severity in the boreal forest and tundra ecosystems of Alaska's national parks. International Journal of Wildland Fire 17, 463–475.

Barrett, K., Kasischke, E.S., McGuire, A.D., Turetsky, M.R., Kane, E.S. (2010). Modeling fire severity in black spruce stands in the Alaskan boreal forest using spectral and non-spectral geospatial data. Remote Sensing of Environment, 114 (7), 1494-1503.

Boer, M.M., Macfarlane, C., Norris, J., Sadler, R.J., Wallace, J. & Grierson, P.F. (2008). Mapping burned areas and burn severity patterns in SW Australian eucalypt forest using remotely-sensed changes in leaf area index. Remote Sensing of Environment, 112(12), 4358-4369.

Brewer, K.C., Winne, J.C., Redmond, R.L., Opitz, D.W. & Mangrich, M.V. (2005). Classifying and mapping wildfire severity: A comparison of methods. Photogrammetric Engineering and Remote Sensing, 71(11), 1311-1320.

Burton, Phillip J., Parisien, Marc-André, Hicke, Jeffrey A., Hall, Ronald J. & Freeburn, Jason T. (2008). Large fires as agents of ecological diversity in the North American boreal forest. International Journal of Wildland Fire 17 (6), 754-767.

Chen, Xuexia, Vogelmann, James E., Rollins, Matthew, Ohlen, Donald, Key, Carl H., Yang, Limin, Huang Chengquan & Shi, Hua (2011). Detecting post-fire burn severity and vegetation recovery using multispectral remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. International Journal of Remote Sensing, 32 (23), 7905-7927.

Cocke, A.E., Fulé, P.Z. & Crouse, J.E. (2005). Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire, 14, 189-198.

De Santis, A. & Chuvieco, E. (2007). Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sensing of Environment, 108(4), 422-435.

De Santis, Angela, Asner, Gregory P., Vaughan, Patrick J., Knapp, David E. (2010). Mapping burn severity and burning efficiency in California using simulation models and Landsat imagery. Remote Sensing of Environment, 114 (7), 1535-1545.

Duffy, P.A., Epting, J,, Graham, J.M., Rupp, T.S. & McGuire, A.D. (2007). Analysis of Alaskan burn severity patterns using remotely sensed data.International Journal of Wildland Fire 16, 277-284.

Eidenshenk J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B. & Howard, S. (2007). A Project for Monitoring Trends in Burn Severity. Fire Ecology Special Issue. Vol. 3, No. 1.

Epting, J., Verbyla, D. & Sorbel, B. (2005). Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sensing of Environment, 96(3-4), 328-339.

Escuin, S., Navarro, R., Fernandez, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM Images. International Journal of Remote Sensing, 29(4), 1053-1073.

Escuin, S., Navarro, R., Fernandez, P. (2009). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM Images. International Journal of Remote Sensing, 29(4), 1053-1073.

Fox, D. M., Maselli, F. & Carrega, P. (2008). Using SPOT images and field sampling to map burn severity and vegetation factors affecting post forest fire erosion risk. CATEN, 75(3), 326.-335

French, N.H., Kasischke, E.S., Hall, R.J., Murphy, K.A., Verbyla, D.L., Hoy, E.E. & Allen, J.L. (2008). Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. International Journal of Wildland Fire 17, 443–462.

Hall, R.J., Freeburn, J.T., de Groot, W.J., Pritchard, J.M., Lynham, T.J. & Landry, R. (2008). Remote sensing of burn severity: experience from western Canada boreal fires. International Journal of Wildland Fire 17, 476–489.

Holden ZA, Morgan P, Smith AM S, Vierling L (2010) Beyond Landsat: a comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA. International Journal of Wildland Fire 19, 449–458.

Holden, Z.A., Smith, A.M.S., Morgan, P., Rollins, M.G. & Gessler, P.E. (2005). Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. International Journal of Remote Sensing, 26(21), 4801-4808.

Hossack, B.R., Lowe, W.H., Honeycutt, R.K., Parks, S.A., Corn, P.S., 2013. Interactive effects of wildfire, forest management, and isolation on amphibian and parasite abundance. Ecol Appl 23: 479-492.

Hoy, E.E., French, N.H., Turetsky, M.R., Trigg, S.N., & Kasischke, E.S. (2008). Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests.International Journal of Wildland Fire17, 500–514.

Hudak, A.T., Morgan, P., Bobbitt, M.J., Smith, A.M.S., Lewis, S.A., Lentile, L.B., Robichaud, P. R., Clark, J.T., & McKinley, R.A. (2007). The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecology: 3(1): 64-90.

Karau E.C. & Keane R.E. (2010). Burn severity mapping using simulation modelling and satellite imagery. International Journal of Wildland Fire, 19, 710–724.

Keeley, J.E. (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire 18, 116–126.

Key, C.H. & Benson, N.C. (2005). Landscape assessment: remote sensing of severity, the Normalized Burn Ratio. In: D.C. Lutes et al. (Editors), FIREMON: Fire Effects Monitoring and Inventory System , Ogden, UT: USDA Forest Service, Rocky Mountain Research Station, General Technical Report, RMRS-GTR-164-CD:LA1-LA51.

Key, C.H. 2006. Ecological and sampling constraints on defining landscape fire severity. Fire Ecology: 2(2): 178-203.

Lentile, L.B., Holden, Z.A., Smith, A.M. , Falkowski, M.J., Hudak, A.T., Morgan, P., Lewis, S.A., Gessler, P.E. & Benson, N.C. (2006). Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire 15, 319–345.

Leslie A. Boby, Edward A. G. Schuur, Michelle C. Mack, David Verbyla, Jill F. Johnstone. (2010). Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest. Ecological Applications 20:6, 1633-1647.

Liu, Jinxun, Vogelmann, James E., Zhu, Zhiliang, Key, Carl H., Sleeter, Benjamin M., Price, David T., Chen, Jing M., Cochrane, Mark A., Eidenshink, Jeffrey C., Howard, Stephen H., Bliss, Norman B. & Jiang, Hong (2011). Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951-2000. Ecological Modelling, 222 (14), 2333-2341.

Loboda, T., O'Neal, K.J. & Csiszar, I. (2007). Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sensing of Environment, 109(4), 429-442.

Lopez Garcia, M.J. & Caselles, V. (1991). Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International, 1, 31-37.

Lozano, F., Suarez-Seoane, S. & de Luis, E. (2007). Assessment of several spectral indices derived from multi-temporal Landsat data for fire occurrence probability modelling. Remote Sensing of Environment, 107(4), 533-544.

Miller, J.D. & Yool, S.R. (2002). Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sensing of Environment, 82(2-3), 481-496.

Murphy, K.A., Reynolds, J.H. & Koltun, J.M. (2008). Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. International Journal of Wildland Fire 17, 490–499.

Navarro Cerrillo, R.M., Hayas, A., Garcia-Ferrer, A.C., Clemente, R.H., Duhalde, P., Gonzalez, L. (2008). Characteristics of areas affected by fire in 2005 at Parque Nacional de Torres del Paine (Chile) as assessed from multispectral images. REVISTA CHILENA DE HISTORIA NATURAL, 81 (1), 95-110.

Norton, J., Glenn, N., Germino, M., Weber, K., & Seefeldt, S. (2009). Relative suitability of indices derived from Landsat ETM+ and SPOT 5 for detecting fire severity in sagebrush steppe. International Journal of Applied Earth Observation and Geoinformation, 11(5): 360-367.

Parks, S.A., Miller, C., Nelson, C.R., Holden, Z.A., 2014. Previous fires moderate burn severity of subsequent wildland fires in two large western us wilderness areas. Ecosystems 17: 29-42.

Parks, S.A., Parisien, M.-A., Miller, C., Dobrowski, S.Z., 2014. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture. Plos One 9: e99699.

Parks, S.A., Dillon, G.K., Miller, C., 2014. A new metric for quantifying burn severity: The relativized burn ratio. Remote Sensing 6: 1827-1844.

Pérez-Cabello, F., Montorio Llovería. R., García-Martín, A., and de la Riva Fernández, J. (2007). Evolution of dNBRextended in terms of different fire-severity levels and plant communities in wildfires areas of the Pre-Pyrenees (Spain). in Ioannis Z. Gitas and César Carmona-Moreno (Editors) (2007): Proceedings of the 6th International Workshop of The EARSeL Special Interest Group On Forest Fires - Advances in Remote Sensing and GIS Applications in Forest Fire Management: 242-246.

Picotte, J.J. & Robertson, K.M. (2011). Validation of remote sensing of burn severity in south-eastern US ecosystems. International Journal of Wildland Fire 20, 453-464.

Robichaud, P.R., Lewis, S.A., Laes, D.Y.M., Hudak, A.T., Kokaly, R.F. Zamudio, J.A. (2007). Postfire soil burn severity mapping with hyperspectral image unmixing. Remote Sensing of Environment, 108(4), 467-480.

Roy, D.P., Boschetti, L. & Trigg, S.N. (2006). Remote sensing of fire severity: Assessing the performance of the Normalized Burn Ratio. IEEE Geoscience and Remote Sensing Letters, 3(1), 112-116.

Smith, A. M. S., Lentile, L. B., Hudak, A. T. & Morgan, P. (2009). Evaluation of linear spectral unmixing and DNBR for predicting postfire recovery in a North American ponderosa pine forest. International Journal of Remote Sensing, 28(22), 5159-5166.

Soverel, Nicholas O., Perrakis, Daniel D.B., Coops, Nicholas C. (2010). Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sensing of Environment, 114 (9), 1896-1909.

Sunderman, S.O. & Weisberg, P.J. (2011). Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert spring ecosystems. Remote Sensing of Environment, (115) 9, 2384-2389.

Van Wagtendonk, J.W., Root, R.R. & Key, C.H. (2004). Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of Environment, 92(3), 397-408.

Veraverbeke, S. Lhermitte, S. Verstraeten, W.W. Goossens,R. (2010). A time-integrated MODIS burn severity assessment using the multi-temporal differenced normalized burn ratio (dNBRMT). International Journal of Applied Earth Observation and Geoinformation, In Press.

Veraverbeke, S., Lhermitte, S., Verstraeten, W.W., Goossens, R. (2010). The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: The case of the large 2007 Peloponnese wildfires in Greece, Remote Sensing of Environment, 114, (11), 2548-2563.

Veraverbeke, S., Verstraeten, W.W., Lhermitte, S., Goossens, R. (2010). Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. International Journal of Wildland Fire 19, 558–569.

Verbyla, D.L., Kasischke, E.S. & Hoy, E.E. (2008). Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+ data. International Journal of Wildland Fire 17, 527–534.

Walz, Y., Maier, S.W., Dech, S.W., Conrad, C., Colditz, R.R. (2007). Classification of burn severity using Moderate Resolution Imaging Spectroradiometer (MODIS): a case study in the jarrah-marri forest of south-west Western Australia. Journal of Geophysical Research 112.

White, J.D., Ryan, K.C., Key, C.C. & Running, S.W. (1996). Remote Sensing of Forest Fire Severity and Vegetation Recovery. International Journal of Wildland Fire 6, 125–136.

Wulder, M.A., White, J.C., Alvarez, F., Han, T., Rogan, J., & Hawkes, B. (2009). Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data. Remote Sensing of Environment, 113(7), 1540-1555.

References that use NBR/dNBR derived data to solve questions

Biological Effects:

Hossack, Blake R., Lowe, Winsor H. & Corn, Paul Stephen (2012). Rapid Increases and Time-Lagged Declines in Amphibian Occupancy after Wildfire. Conservation Biology, 27 (1), 219-228.

Hydrological effects:

Cannon, S.H., Gartner, J.E., Rupert, M.G., Michael, J.A., Djokic, D. & Sreedhar, S. (2003). Emergency Assessment of Debris-Flow Hazards from Basins Burned by the Grand Prix and Old Fires of 2003, Southern California. Open-File Report, 03-0475: U.S. Geological Survey.

Lewis, S.A., Wu, J.Q. & Robichaud, P.R. (2006). Assessing burn severity and comparing soil water repellency, Hayman Fire, Colorado. Hydrological Processes, 20(1), 1-16.

Miller, J.D., Nyhan, J.W. & Yool, S.R. (2003). Modeling potential erosion due to the Cerro Grande Fire with a GIS-based implementation of the Revised Universal Soil Loss Equation. International Journal of Wildland Fire, 12(1), 85-100..

Moody, J.A., Martin, D.A., Haire, S.L., & Kinner, D.A.. (2007). Linking runoff response to burn severity after a wildfire. Hydrological Processes, 22, 2063-2074.

Pérez-Cabello, F., de la Riva Fernández, J., Montorio Llovería, R., and García-Martín, A. (2006). Mapping erosion-sensitive areas after wildfires using fieldwork, remote sensing, and geographic information systems techniques on a regional scale. Journal of Geophysical Research 111, G04S10, doi:10.1029/2005JG000148. 13 pp.

Fuel treatment effectiveness:

Finney, M.A., McHugh, C.W. & Grenfell, I.C. (2005). Stand- and landscape-level effects of prescribed burning on two Arizona wildfires. Canadian Journal of Forest Research, 35(7), 1714-1722.

Safford, H.D., Schmidt, D.A., Carlson, C.H. (2009). Effects of fuel treatments on fire severity in an area of wildland-urban interface, Angora Fire, Lake Tahoe Basin, California, Forest Ecology and Management, 258(5), 773-787.

Wimberly, M.C., Cochrane, M.A., Baer, A.D. & Pabst, K. (2009). Assessing fuel treatment effectiveness using satellite imagery and spatial statistics. Ecological Applications, 19(6), 1377-1384.

Landscape level ecosystem processes:

Bigler, C., Kulakowski, D. & Veblen, T.T. (2005). Multiple disturbance interactions and drought influence fire severity in Rocky Mountain subalpine forests. Ecology, 86(11), 3018-3029.

Cansler, Alina C. & McKenzie, Donald (2012). How robust are burn severity indices when applied in a new region? Evaluation of alternate filed-based and remote-sensing methods. Remote Sensing, 4 (2), 456-483.

Dillon, G. K., Z. A. Holden, P. Morgan, M. A. Crimmins, E. K. Heyerdahl, and C. H. Luce. 2011. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere 2(12):130.

Dillon, G.; Morgan, P.; Holden, Z. 2011. Mapping the Potential For High Severity Wildfire in The Western United States. Fire Management Today. 71(2):25-28.

Epting, J. & Verbyla, D. (2005). Landscape-level interactions of prefire vegetation, burn severity, and postfire vegetation over a 16-year period in interior Alaska. Canadian Journal of Forest Research, 35, 1367-1377.

Forrestel, A.B., Moritz, M.A. & Stephens, S.L. (2011). Landscape-scale vegetation change following fire in Point Reyes, California, USA. Fire Ecology: 7(2): 114-128.

Haire, S.L. and K. McGarigal. 2009. Changes in fire severity across gradients of climate, fire size, and topography: A landscape ecological perspective. Fire Ecology 5(2): 86-103.

Haire, S.L., McGarigal, K. & Miller, C. (2013). Wilderness shapes contemporary fire size distributions across landscapes of the western United States. Ecosphere 4 (1): art15.

Holden, Z.A., Morgan, P. & Evans, J.S. A predictive model of burn severity based on 20-year satellite-inferred burn severity data in a large southwestern US wilderness area, Forest Ecology and Management.

Kane, Van R., Lutz, James A., Roberts, Susan L., Smith, Douglas F., McGaughey, Robert J., Povak, Nicholas A. & Brooks, Matthew L. (2013). Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park. Forest Ecology and Management, 287, 17-31.

Kasischke, E.S., Verbyla, D.L., Rupp, T.S., McGuire, A.D., Murphy, K.A., Jandt, R., Barnes, J.L., Hoy, E.E., Duffy, P.A., Calef, M. & Turetsky, M.R. (2010). Alaska's changing fire regime – implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research 40, 1313-1324.

Kokaly, R.F., B. W. Rockwell, S.L. Haire, and T.V.V. King. 2007. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sensing of Environment 106(3): 305-325.

Kotliar, N.B., Haire, S.L. & Key, C.H. (2003). Lessons from the fires of 2000: post-fire heterogeneity in Ponderosa pine forests, RMRS-P-29. Conference Proceedings, April 16-18, 2002, Fort Collins, CO: USDA Forest Service, Rocky Mountain Research Station, 277-279 pp.

Kotliar, N.B., P.L. Kennedy, and K. Ferree. 2007. Avifaunal responses to fire in southwestern montane forests along a burn severity gradient. Ecological Applications 17(2): 491-507.

Lee, S.-W.; Lee, M.-B.; Lee, Y.-G.; Won, M.-S.; Kim, J.-J.; Hong, S.-K. (2009). Relationship between landscape structure and burn severity at the landscape and class levels in Samchuck, South Korea. Forest Ecology and Management, 258 (7) 1594–1604.

Lentile, L.B., Smith, A.M., Hudak, A.T., Morgan, P., Bobbitt, M.J., Lewis, S.A. & Robichaud P.R. (2009). Remote sensing for prediction of 1-year post-fire ecosystem condition. International Journal of Wildland Fire 18, 594–608.

Lozano, F., Suarez-Seoane, S. & de Luis, E. (2007). Assessment of several spectral indices derived from multi-temporal Landsat data for fire occurrence probability modelling. Remote Sensing of Environment, 107(4), 533-544.

Lutz, J.A., Key, C.H., Kolden, C.A., Kane, J.T. & van Wagtendonk, J.W. (2011). Fire frequency, area burned and severity: a quantitative approach to defining a normal fire year. Fire Ecology: 7(2): 51-65.

Meigs, G.W., Donato, D.C., Campbell, J.L., Martin, J.G. & Law, B.E. (2009). Forest Fire Impacts on Carbon Uptake, Storage and Emission: The Role of Burn Severity in the Eastern Cascades, Oregon. Ecosystems 12: 1246-1267.

Meigs G.W., Turner D.P., Ritts W.D., Zhiqiang Y., Law B.E. (2011). Landscape-scale simulation of heterogeneous fire effects on pyrogenic emissions, tree mortality, and net ecosystem production. Ecosystems. doi: 10.1007/s10021-011-9444-8 .

Miller, J.D., Knapp, E.E., Key, C.H., Skinner, C.N., Isbell, C.J., Creasy, R.M., & Sherlock, J.W. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sensing of Environment, 113(3), 645-656.

Miller, J.D. & Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment, 109(1), 66-80.

Miller, J.D. & Fites, J. (2006). Sierra Nevada Fire Severity Monitoring: 1984 - 2004. Internal Report, Draft. Nevada City, CA: USDA Forest Service, Pacific Southwest Region, Adaptive Management Services Enterprise Team, 62 pp.

Picotte, J.J. & Robertson, K. (2011). Timing constraints on remote sensing of wildland fire burned area in the southeastern US. Remote Sensing 3, 1680-1690.

Reinhardt, E.D., Keane, R.E., Brown, J.K. (2001). Modeling fire effects. International Journal of Wildland Fire, 10, 373-380.

Soverel, N.O., Coops, N.C., Perrakis, D.D.B., Daniels, L.D. & Gergel, S.E. (2011). The transferability of a dNBR-derived model to predict burn severity across 10 wildland fires in western Canada. International Journal of Wildland Fire 20, 518-531.

Thode, A.E. (2005). Quantifying the Fire Regime Attributes of Severity and Spatial Complexity Using Field and Imagery Data. PhD Dissertation, University of California, Davis, CA.

Wimberly, M.C. & Reilly, M.J. (2007). Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery. Remote Sensing of Environment, 108(2), 189-197.


Brewer, C.K., Schwind, B., Queen, L., Quayle, B. & Eidenshink, J. (2007). Alternative Landscape Pattern Analyses using MTBS Historical Burn Severity Data. Proceedings of Climate Change Impacts on Boreal Forest Disturbance Regimes, Fairbanks, AK, May 30 – June 2, 2007.

Howard, S. (2005). Monitoring Trends in Burn Severity. USGS Wildland Fire Science Workshop. Tucson, AZ, December 6-9, 2005.

Key, C.H. & Benson, N.C. (1999). Measuring and Remote Sensing of Burn Severity: the CBI and NBR. Proceedings of Joint Fire Science Conference and Workshop, Volume 2, Boise, ID, June 15-17, 1999. University of Idaho and International Association of Wildland Fire. 284 pages.

Schwind, B., Eidenschenk, J. & Quayle, B. (2008). Historical Fire Severity Data in the Southwestern United States: Results from the Monitoring Trends in Burn Severity Project. Association for Fire Ecology Regional Conference 2008 Fire in the Southwest: Integrating Fire into Management of Changing Ecosystems, Tucson, AZ, January 28-31, 2008. The Association of Fire Ecology.

If you can not open pdf files, please download a free Acrobat Reader.

Forest Service:
Last Update